Remoção de corante têxtil de solução aquosa por bioadsorvente produzido dos resíduos sólidos da mandiocaba (*Manihot Esculenta* Crantz): cinética e equilíbrio de adsorção.

Rafael Silva Dias

Mestre, UFPA, Brasil diasrafael353@gmail.com

Lênio José Guerreiro de Faria

Professor Doutor, UFPA, Brasil. leniojgfaria@gmail.com

Marlice Cruz Martelli

Professora Doutora, UFPA, Brasil. martelli@ufpa.br

Davi do Socorro Barros Brasil

Professor Doutor, UFPA, Brasil. dsbbrasil18@gmail.com

RESUMO

Este estudo aborda a problemática das contaminações químicas provenientes de corantes têxteis em efluentes, bem como a geração excessiva de resíduos sólidos agroindustriais. A solução proposta é a produção de carvões ativados a partir dos resíduos sólidos da mandiocaba, visando remover corantes têxteis, como o azul de metileno. O estudo foca na síntese de carvão ativado a partir da polpa da mandiocaba para adsorção do corante. A pesquisa começa com a caracterização do precursor do carvão, analisando proteínas totais, umidade, óleos totais e carboidratos. Os testes de cinética e equilíbrio de adsorção são conduzidos utilizando um leito fixo, com concentração do corante a 120 mg/L e massa de carvão de 0,01 g. Os resultados da caracterização revelam percentuais de 0,51%, 83,40%, 0% e 16,10% para proteínas totais, umidade, óleos totais e carboidratos, respectivamente. A análise cinética de adsorção sugere um ajuste significativo ao modelo de difusão intrapartícula, enquanto o equilíbrio de adsorção se alinha bem com o modelo de Langmuir. Os carvões ativados produzidos a partir da polpa da mandiocaba demonstram resultados altamente satisfatórios nas condições testadas, indicando que podem ser eficazes e de baixo custo como bioadsorventes para a remoção do corante azul de metileno de soluções aquosas. Dessa forma, este estudo oferece uma solução potencialmente valiosa para a questão da contaminação por corantes têxteis e para a gestão de resíduos agroindustriais, ao mesmo tempo em que aproveita um subproduto da mandiocaba para fins benéficos e sustentáveis.

PALAVRAS-CHAVE: Tratamento de efluentes. Adsorção. Pigmentos.

1 INTRODUÇÃO

O mundo consome o dobro de água do que há duas décadas. Seu intenso uso na agricultura, indústria, domicílios e transporte e ainda com problemas como as mudanças climáticas estão tornando a água um recurso escasso rapidamente (AHMED et al., 2021, p. 416, tradução nossa). A contaminação química da água é na sua maioria por metais pesados, corantes, solventes orgânicos diluídos, pesticidas e herbicidas, especialmente em efluentes industriais e lençóis freáticos. (NORRRAHIM et al., 2021, p. 7348, tradução nossa).

As indústrias têxtil, de papel e do couro são responsáveis por descarregar um alto volume de águas residuais contaminadas com pigmentos em corpos de água (ARDILA-LEAL et al., 2021, p. 1, tradução nossa). As indústrias dependentes de corantes se expandem globalmente, atingindo quase 8x10⁵ toneladas de corantes sintéticos por ano (SLAMA et al., 2021, p. 2, tradução nossa). A presença de tais componentes emáguas residuais industriais pode criar sérios problemas ambientais por conta da toxicidade para a vida aquática e mutagenicidade em humanos (SINGH & ARORA, 2011, p. 809, tradução nossa).

Além desta problemática, há também outro impacto para o meio ambiente durante o beneficiamento industrializado da mandiocaba (*Manihot esculenta* Crantz). Ocorrendo naturalmente na região amazônica, a mandiocaba se difere com as demais variedades de mandioca por apresentar alta umidade e baixo rendimento em fécula. (SOUZA, 2010, p. 25).

Porém, no processamento para extração da manicuera são descartados vários resíduos, os principais são: resíduos sólidos, como casca marrom, entrecasca, descarte, crueira, fibra, bagaço e varredura; e resíduos líquidos como água de lavagem, água de prensa e água de extração de fécula (MARTINEZ, 2017, p. 142).

Nesse contexto, o presente estudo se propõe a desenvolver as melhores condições de síntese de carvão ativado produzido a partir dos resíduos sólidos da mandiocaba como bioadsorvente para a remoção de azul de metileno, como uma alternativa de aplicação do resíduo e para tratar a poluição por corantes em efluentes.

2 OBJETIVOS

O objetivo geral deste trabalho foi a produção de carvão da polpa de mandiocaba como bioadsorvente para remoção do corante azul de metileno em solução aquosa. Como objetivos específicos buscou-se caracterizar a polpa de mandiocaba e realizar os testes de cinética e de equilíbrio de adsorção do carvão produzido.

3 METODOLOGIA

3.1 Pré-tratamento da matéria-prima

As raízes foram transferidas em fardos de tecido ao Laboratório de Engenharia Química, depois armazenadas em unidades de refrigeração. As amostras escolhidas foram lavadas e em seguida houve a remoção das cascas. A polpa restante foi reduzida a pequenos cubos e envolvida em material filtrante antes de ser submetida à prensagem. A prensagem ocorreu utilizando uma prensa hidráulica da marca Bovenau, com uma carga de 10 Toneladas aplicada à amostra. O disco prensado resultante da prensagem da polpa foi separado do material filtrante e encaminhado para um secador convertido em bandeja, onde foi submetido a uma temperatura de 80°C com ventilação forçada por um período de 24 horas. A umidade das amostras foi determinada simultaneamente ao processo de secagem. Decorridas as 24 horas, os componentes, tanto a casca quanto a polpa, foram retirados do secador e triturados separadamente utilizando um moinho de facas.

3.2 Determinação de proteínas totais

Uma parte da farinha da polpa seca e moída foi levada para a determinação de proteínas totais pelo método de Kjeldahl modificado e óleos totais. O restante das amostras do processo de trituração foi utilizado para produção de carvão. A equação 1 foi aplicada para o cálculo de proteínas totais.

$$Prote\acute{ma}(\%) = \frac{K * V * Fator}{P} \tag{1}$$

Em que:

K = Fc*0,0014*100

Fc = fator de correção da solução de ácido sulfúrico 0,1N

P = massa da amostra em gramas

V = volume da solução de ácido sulfúrico gasto na titulação

Fator = fator de conversão do nitrogênio em proteína

3.3 Determinação da umidade

A umidade total foi mensurada aferindo 10g da amostra antes da extração do suco da amostra em cápsula de metal, previamente tarada, em seguida foi aquecida durante 3 horas em secador convertido em bandeja. Após este período foi resfriada em dessecador até a temperatura ambiente, em seguida a massa foi aferida. Foi repetida a operação de aquecimento e resfriamento até peso constante (LUTZ; LUTZ, 1985, p. 21). Os dados recolhidos foram aplicados na Equação 2.

$$Umidade(\%) = \frac{100 * N}{P}$$
 (2)

N = Gramas e umidade (Perda de massa em gramas)

P = massa da amostra

3.4 Determinação de óleos totais

A determinação de óleos totais foi efetuada seguindo o método de Lutz e Lutz (1985, p. 42). O cálculo da quantidade de óleos é feito a partir da Equação 3.

$$\acute{O}leos_{totais}(\%) = \frac{100 * N}{P} \tag{3}$$

3.5 Determinação de carboidratos

Os carboidratos presentes nas amostras foram determinados pelo método da diferença, como demonstrado pela Equação 4 (OLIVEIRA JUNIOR, 2008, p. 2).

Carboidratos (%) =
$$100\%$$
 – (Proteína% + Umidade% + Óleos_{totais}%) (4)

3.6 Síntese do carvão ativado

A polpa de mandiocaba, previamente seca, foi triturada em moinho de facas. Primeiramente, 100 g de material foi ativado quimicamente se baseando no método de (KIM et al., 2001, p. 29) modificado, umectando o precursor em soluções de concentração de 10,2% de $\rm H_2SO_4$ Neon 97,59% em proporção de 5:1, a mistura umedecida foi mantida por 24 horas. Ao final, o material foi lavado com 2 litros de água destilada. Após a lavagem, o material foi seco em estufa a 80 $\,^{\circ}$ C, em seguida transferido para cadinhos de cerâmica para ser realizada a pirólise em uma mufla a 600 $\,^{\circ}$ C por 3h.

3.7 Curva padrão de calibração

A curva analítica do azul de metileno foi produzida dissolvendo a solução-mãe nas concentrações de 5, 10, 15, 20, 25 e 30 mg/L, no comprimento de onda de 664nm. A determinação da absorbância foi feita utilizando espectrofotômetro Shimadzu, UV-1800.

3.8 Cinética e equilíbrio de adsorção

Foram conduzidos experimentos para investigar a cinética e o equilíbrio de adsorção utilizando uma solução aquosa de azul de metileno como adsorbato. A cinética de adsorção foi estudada em um sistema de banho finito, utilizando um Erlenmeyer de 125 mL, contendo 100 mL da solução contaminante e 0,04 g de carvão ativado, a uma temperatura ambiente de 28 ºC. Amostras foram retiradas em intervalos de tempo pré-determinados: a cada 2 minutos na primeira hora, a cada 1 hora nas próximas 3 horas e a cada 24 horas após as primeiras 4 horas. A concentração do contaminante foi medida nessas amostras. Diferentes modelos cinéticos foram avaliados, incluindo o modelo de Pseudo-primeira ordem, Pseudo-segunda ordem, Difusão intrapartícula e o modelo de Elovich. As equações usadas para ajustar os modelos aos dados experimentais estão descritas no Quadro 1.

Quadro 1 - Modelos de cinética de adsorção

Quadro 1 Moderos de cirretica de ausorção				
Modelo	Equação			
Pseudo-primeira ordem	$q_t = e^{1 - Exp(-k*t)}$			
Pseudo-segunda ordem	$q_t = \frac{(k_2 * q_e^2 * t)}{(1 + k_2 * q_e * t)}$			
Difusão intrapartícula	$q_t = k * t^{0,5} + C$			
Elovich	$q_t = \left(\frac{1}{B}\right) * Log \left(1 + A * B * t\right)$			

Fonte: Autores, 2023.

Os testes para o equilíbrio de adsorção, foram realizados em sistema de banho finito, com 100 ml da solução contaminante e variadas concentrações iniciais (120, 100, 80, 60 e 40) mg/L, sendo mantida a massa de adsorvente em 0,04g. O processo foi conduzido à temperatura ambiente (28 ºC). Os modelos de isotermas testados para o equilíbrio de adsorção foram o de Langmuir, de Freundlich e de Redlich-Peterson. As equações dos modelos para os ajustes estão no Quadro 2.

Quadro 2 – Modelos de isotermas de equilíbrio

Quadro 2 – Moderos de Isotermas de equilibrio			
Modelo Equação			
Langmuir	$q_e = q_{max} \left(\frac{(b * C_e)}{1 + b * C_e} \right)$		
Freundlich	$q_e = K_f * (C_e)^{n_F}$		
Redlich-Peterson	$q_e = \frac{K_{RP} * C_e}{1 + \alpha_{RP} * C_e^{\beta}}$		

Fonte: Autores, 2023.

3.9 Teste qui-quadrado (χ^2) e Coeficiente de determinação (R^2)

O teste *qui-quadrado* (χ^2), mostrado na Equação 5, estabelece o grau de correspondência entre as frequências observadas (x_i) e calculadas (y_i), ou seja, nos mostra se há uma diferença significativa entre os valores observados e calculados (Siegel; Castellan, 2008, p. 43).

$$\chi^{2} = \sum_{i=k}^{k} \frac{(x_{i} - y_{i})^{2}}{y_{i}}$$
 (5)

O coeficiente de determinação, conhecido por R², é o quadrado do coeficiente de correlação momento-produto de Pearson. Segundo Triola (1999, p. 235) há uma correlação entre duas variáveis quando uma delas está possivelmente relacionada com a outra de alguma maneira.

O coeficiente de determinação pode representar a proporção da variação da variável dependente que é explicada pela variação da variável independente (Kennedy, 2008, p. 13). A relação matemática utilizada para o cálculo do coeficiente de determinação é mostrada na Equação 6.

$$R^{2} = \frac{\left(\sum (x_{i} - \underline{x})(y_{i} - \underline{y})\right)^{2}}{\sum (x_{i} - \underline{x})^{2} \sum (y_{i} - \underline{y})^{2}}$$
(6)

RESULTADOS E DISCUSSÃO

3.10 Proteínas totais, Umidade, Óleos totais e Carboidratos

Os resultados de proteínas totais, umidade, óleos totais e de carboidrato estão no Quadro 3.

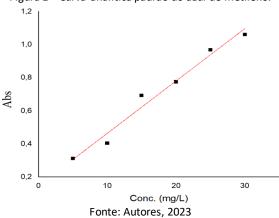
Quadro 3 – Resultados da caracterização da matéria-prima

Proteínas (%)	oteínas (%) Umidade (%) Óleos totais (%)		Carboidratos (%)	
0,51	0,51 83,40 0		16,10	

Fonte: Autores, 2023.

3.11 Curva padrão de calibração

Os resultados das leituras no espectrofotômetro para a obtenção da curva padrão de calibração estão na Quadro 4.


Quadro 4 – Resultado da absorbância em uma dada concentração.

——————————————————————————————————————					
Amostra	Concentração	ABS			
01	5	0,164			
02	10	0,252			
03	15	0,531			
04	20	0,748			
05	25	0,885			
06	30	1.003			

Fonte: Autores, 2023.

Com estes dados foi construído o gráfico da Figura 1 de absorbância versus concentração.

Figura 1 – Curva analítica padrão do azul de metileno.

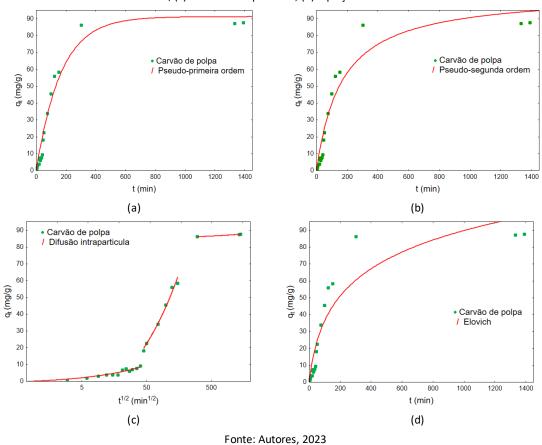
Obteve-se, então, a equação da reta, representada pela na Equação 7 com coeficiente de determinação R^2 = 0, 9756.

$$y = 0.03608 x - 0.03427 \tag{7}$$

3.12 Cinética de adsorção

O estudo da cinética de adsorção do carvão foi realizado nas condições de massa de adsorvente (m) de $0,1\,g$, Concentração inicial de corante (C_0) de $100\,$ mg L^{-1} e volume de solução (V) de $100\,$ ml. Os dados apresentados no Quadro $5\,$ apresentam a quantidade adsorvida por minuto.

Quadro 5-Quantidade adsorvida e seus tempos de obtenção.

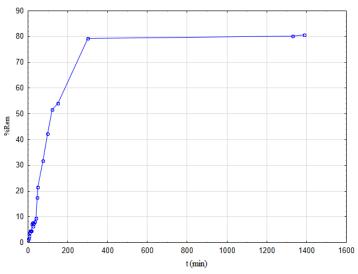

t (min)	Q(mg/g)	t (min)	Q(mg/g)
0	0	35	7,8697
3	0,5372	40	9,3868
6	3,5000	45	18,2048
9	3,2553	50	22,6611
12	4,0139	60	34,0707
15	3,9190	64	45,5120
18	3,9190	88	55,9418
21	6,9216	112	58,4386

24	7,5221	150	86,1883
27	6,0366	1330	87,3577
30	7,0796	1390	87,8318

Fonte: Autores, 2023.

Para fins de análise de cinética de adsorção foram construídos gráficos que demonstram o comportamento do carvão (Figura 2). Os modelos teóricos foram ajustados para a dispersão de dados experimentais com o auxílio do programa Statistica v.14 (EUA), utilizando a função de perda de mínimos quadrados e método estimativo de Levenberg-Marquard.

Figura 2 – Gráficos de cinética de adsorção com os modelos: (a) Pseudo-primeira ordem, (b) Pseudo-segunda ordem; (c) Difusão intraparticula; (d) Equação de Elovich.



O critério utilizado para a convergência ser considerada satisfatória foi a diferença no resultado da função perda menor que $1,0x10^{-6}$ e o número máximo de interações foi fixado em 50 interações.

Para se obter a convergência para os modelos de Pseudo-primeira ordem (PPO) os valores iniciais de q_e e K_1 foram em 100 e 0,00001, respectivamente. A equação de Elovich

converge com as condições iniciais de B e A em 0,000001 e 10, respectivamente. Os percentuais de remoção da polpa obtidos, variando com o tempo, podem ser observados através dos gráficos na Figura 3. os valores foram calculados a partir da Equação 8.

Figura 3 – Percentual de remoção para polpa.

Fonte: Autores, 2023

$$\%Rem = \left(\frac{q_i - q_f}{q_i}\right) * 100 \tag{8}$$

Na imagem, pode-se observar a remoção de 80,71% do corante. A remoção quase completa do poluente contido no volume demonstra a alta eficiência dos adsorventes produzidos.

Os valores dos parâmetros obtidos na adequação das curvas experimentais foram calculados e organizados no Quadro 6.

Quadro 6 – Dados dos parâmetros dos modelos cinéticos

Modelos	Parâmetros cinéticos				
PPO	q _e	k ₁	R ²	X ²	
PPO	91,28	0,006	0,98	661,47	
DCO	q _e	k ₂	R ²	X ²	
PSO	105,61	0,00005	0,97	1209,61	
Difusão intraparticula	k _{df}	С	R ²	X ²	
Etapa I	1,56	-1,34	0,95	9,34	
Etapa II	7,61	-31,33	0,99	26,74	
Etapa III	0,07	84,92	0,97	0,09	
Elovich	α	β	R ²	X ²	
EIOVICII	0,80	0,04	0,94	2067,47	

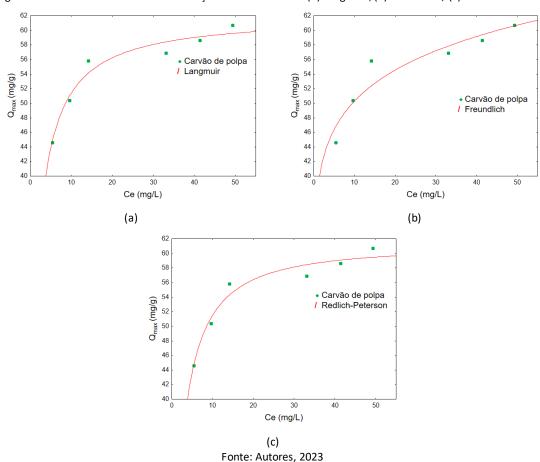
Fonte: Autores, 2023.

Constatou-se no teste cinético de carvão de polpa que o modelo de difusão intrapartícula de Weber-Morris (R^2 =0,95; 0,99 e 0,97), foi o que apresentou melhor ajuste com o menor χ^2 na etapa III. Observa-se que K_d 1 < K_d 2 > K_d 3 em cada uma das etapas, indicando que a difusão é mais lenta na primeira etapa, que perdura pelos primeiros 40 minutos. Na etapa seguinte, a adsorção acelera, onde ocorre a adsorção em um sítio na superfície interna ou externa da partícula, com energia dependendo do processo de acoplamento (físico ou químico). Por fim, após 150 minutos, a velocidade de adsorção diminui, com a difusão ocorrendo nos poros do adsorbato por poros cheios de líquido ou por mecanismo de difusão em meio sólido (CHEUNG; SZETO; MCKAY, 2007, p. 2900). No entanto, a difusão intrapartícula é a única a controlar a adsorção em todas as suas etapas, visto que os coeficientes lineares são diferentes de zero (LEBRON; MOREIRA; SANTOS, 2019, p. 10; SILVA, 2015, p. 5).

A adsorção de azul de metileno foi estudada em relação a diferentes bioadsorventes, incluindo carvão de coco, carvões ativados produzidos a partir de espiga de milho e carvões de casca de banana ativados com Al2(SO4)3. A análise da cinética de adsorção foi conduzida com base no modelo de pseudo-segunda ordem. No estudo realizado por Yağmur e Kaya (2021, p. 7), a adsorção de azul de metileno usando carvão de coco demonstrou seguir uma cinética de pseudo-segunda ordem. Os parâmetros cinéticos obtidos foram K2 = 1,66 g.mg-1.min-1 (taxa de constante de adsorção) e qe = 21,23 g.mg-1 (quantidade máxima de adsorção). No trabalho de Medhat et al. (2021, p. 5), foram investigados adsorventes produzidos a partir de espiga de milho. Os resultados também indicaram uma cinética de pseudo-segunda ordem. Para os carvões ativados com KOH, os parâmetros cinéticos foram K2 = 0,4 g.mg-1.min-1 e qe = 105,3 g.mg-1. Para os adsorventes ativados com (NH4)2SO4, os valores foram K2 = 3,7 g.mg-1.min-1 e qe = 85,5 g.mg-1. No estudo de Behling et al. (2017, p. 116), que utilizou carvões de cas ca de banana ativados com Al2(SO4)3, a cinética de pseudo-segunda ordem também se mostrou adequada. Os parâmetros cinéticos relatados foram K2 = 30,9 g.mg-1.min-1 e qe = 13,44 mg.g-1.

O carvão de polpa de mandiocaba não pode ser comparado aos outros modelos por não apresentar os mesmos parâmetros cinéticos, porém, a taxa de difusão observada pode ser considerada alta, alcançando concentrações próximas ao equilíbrio em 150 minutos.

3.13 Equilíbrio de adsorção


Os dados obtidos no experimento para a obtenção das isotermas de adsorção, para a casca e polpa, foram adicionados no Quadro 7. As condições de utilização da ferramenta de ajuste do modelo aos dados experimentais foram os mesmos utilizados para a cinética de adsorção. Estes valores foram utilizados para produzir os gráficos das isotermas da Figura 4.

Quadro 7 – Concentração no equilíbrio e a quantidade máxima adsorvida.

Ce (mg/L)	$Q_e\left(mg/g\right)$ polpa
5,388	44,612
9,607	50,393
14,158	55,842
33,106	56,894
41,371	58,629

Fonte: Autores, 2023.

Figura 4 – Gráficos das isotermas de adsorção com os modelos: (a) Langmuir; (b) Freundlich; (c) Redlich-Peterson.

Os valores dos parâmetros das isotermas utilizadas nos ajustes e seus respectivos R^2 e χ^2 foram adicionados no Quadro 8.

Quadro 8-Parâmetros dos modelos de isotermas de adsorção.

Modelos	Carvão de polpa				
Langmuir	q _{max}	Ce	-	R ²	X ²
	62,11	0,48	-	0,98	7,18
Freundlich	K _F	1/n	-	R ²	X ²
	38,40	0,117	-	0,95	10,29
Redlich-Peterson	K _{RP}	αRP	в	R ²	X ²

27 70	0.427	1 01	0,98	7,10
27,70	0,721	1,01	0,50	,,10

Fonte: Autor, 2023.

Na análise dos resultados obtidos a partir da amostra de carvão de polpa, destaca-se que os modelos com os coeficientes de determinação mais elevados e os valores reduzidos de χ2 são os modelos de Langmuir e Redlich-Peterson. O modelo de Langmuir, que pressupõe uma adsorção em monocamada sobre uma superfície homogênea do carvão, apresenta uma representação robusta. Por sua vez, o modelo de Redlich-Peterson, uma combinação das características das isotermas de Langmuir e Freundlich, demonstra sua versatilidade ao ser aplicável tanto em sistemas homogêneos como heterogêneos. Ele estabelece que a capacidade de adsorção no equilíbrio (qe) possui uma relação linear no numerador e exponencial no denominador com a concentração no equilíbrio (Ce). Quando o valor de β se aproxima ou iguala a 1, a isoterma de Redlich-Peterson se simplifica para a isoterma de Langmuir, como observado no Quadro 8 (HU et al., 2021, p. 3; REDLICH; PETERSON, 2007, p. 1024). Adicionalmente, a utilização do modelo de Freundlich proporciona entendimento sobre a afinidade entre o adsorvato e o adsorvente, com um valor de K_F= 38,40 L.g⁻¹. O parâmetro n, com valor entre 1 e 10, sugere um grau satisfatório de heterogeneidade na superfície de adsorção. Em síntese, esses resultados indicam a predominância da isoterma de Langmuir em concentrações baixas, enquanto o modelo de Freundlich se mostra mais apropriado para descrever a adsorção em concentrações mais elevadas (YAğMUR; KAYA, 2021, p. 9; ACOSTA et al., 2016 p. 173).

5. CONCLUSÃO

Este trabalho mostrou a influência da temperatura, concentração de ácido e tempo de contato do adsorvente na adsorção de azul de metileno, a partir do carvão da polpa de mandiocaba, sendo concretizada a caracterização do precursor, revelando através dos resultados da quantidade de proteínas, porcentagem de umidade, os óleos totais e o teor de carboidratos, que as amostras utilizadas no experimento possuem características típicas da variedade mandiocaba.

Através dos testes de adsorção, com azul de metileno, foi possível determinar a quantidade máxima de adsorção no equilíbrio (Qe) e o percentual de remoção (%Rem) para cada uma das 30 amostras planejadas mostrando que o adsorvente produzido a partir do carvão de polpa de mandiocaba apresentou características que favoreceram a adsorção do corante catiônico empregado e indicando uma promissora alternativa de aproveitamento deste resíduo.

Na modelagem de cinética de adsorção e do equilíbrio de adsorção do bioadsorvente produzido foi possível mostrar que o modelo que melhor se ajustou aos dados experimentais foi o de difusão intrapartícula de Weber-Morris, indicando que há uma grande afinidade eletrostática entre adsorvente e adsorbato e a difusão intrapartícula é a única a controlar a adsorção em todas as suas etapas, visto que os coeficientes lineares são diferentes de zero. Nos testes de equilíbrio de adsorção a isoterma de Langmuir teve o melhor ajuste indicando que

adsorção ocorre em monocamada e a superfície do carvão é homogênea. O coeficiente de determinação (R²) de 0,98 indica ser capaz de explicar 98% das variabilidades experimentais.

6. Agradecimentos

Ao apoio do CNPq no Projeto PROCAD Amazônia 2018 do Processo: 88881.569753/2020-01 (Procad-AM)

REFERÊNCIAS BIBLIOGRÁFICAS

ACOSTA, R. et al. Tetracycline adsorption onto activated carbons produced by koh activation of tyre pyrolysis char. **Chemosphere**, v. 149, p. 168–176, 2016.

AHMED, S. et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. **Journal of hazardous materials**, Elsevier, v. 416, p. 125912, 2021.

ARDILA-LEAL, Leidy D. et al. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. **Molecules**, v. 26, n. 13, p. 3813, 2021.

BEHLING, S. M. Produção de adsorvente carbonoso preparado a partir da ativação química e física de resíduos de casca de banana. Tese (Doutorado) -UFSC, Florianópolis, Rio Grande do Sul, Brasil, 2017.

CHEUNG, W.H. SZETO, Y.S. MCKAY, G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. **Bioresource Technology**, v. 98, P. 2897-2904, Issue 15, 2007.

HU, Menghao, et al. Preparation of binder-less activated char briquettes from pyrolysis of sewage sludge for liquid-phase adsorption of methylene blue. **Journal of Environmental Management**, v. 299, p. 113601, 2021.

KENNEDY, Peter. A Guide to Econometrics. Massachusetts: Blackwell Publishing, 2008.

KIM, D.-Y. et al. High-yield carbonization of cellulose by sulfuric acid impregnation. **Cellulose**, Springer, v. 8, n. 1, p. 29–33, 2001.

LEBRON, Y.; MOREIRA, V.; SANTOS, L. Studies on dye biosorption enhancement by chemically modified fucus vesiculosus, spirulina maxima and chlorella pyrenoidosa algae. **Journal of Cleaner Production**, v. 240, p. 118197, 2019

INSTITUTO ADOLFO LUTZ. Normas Analíticas do Instituto Adolfo Lutz. v. 1: Métodos químicos e físicos para análise de alimentos, 3. ed. São Paulo: IMESP, 1985. p. 21-43.

MARTINEZ, D. Potencial do resíduo do processamento da mandioca para produção de etanol de segunda geração. **Revista Brasileira de Energias Renováveis**, v. 6, 2017.

MEDHAT, A. et al. Efficiently activated carbons from corn cob for methylene blue adsorption. **Applied Surface Science Advances**, v. 3, p. 100037, 2021.

NORRRAHIM, M. N. F. et al. Nanocellulose: A bioadsorbent for chemical contaminant remediation. **RSC advances**, p. 7347–7368, 2021.

OLIVEIRA JUNIOR, G. I. de, et al. Composição centesimal de pericarpo de milho micropulverizado provenientes de processamento industrial. Belo Horizonte: Sociedade Brasileira de Ciência e Tecnologia de Alimentos, 2008.

REDLICH, O.; PETERSON, D. A useful adsorption isotherm. The Journal of Physical Chemistry, v. 63, 2007.

SIEGEL, S.; CASTELLAN JR., J. Estatística não-paramétrica para ciências do comportamento. 2. ed. Porto Alegre: Bookman, 2008.

SILVA, T. et al. Estudo cinético e de equilíbrio de adsorção para remoção de fenol em soluções aquosas utilizando carvão ativado com co2. **Blucher Chemical Engineering Proceedings**, n. 2, p. 6859–6866, 2015.

SINGH, Kamaljit; ARORA, Sucharita. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. **Critical reviews in environmental science and technology**, n. 9, p. 807-878, 2011.

SLAMA, Houda Ben et al. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. **Applied Sciences**, n. 14, p. 6255, 2021.

SOUZA, H. A. L. de. Caracterização e Estudo da Viabilidade Tecnológica do Aproveitamento da Mandiocaba. Tese (Doutorado em Engenharia de Alimentos) — Universidade Federal do Pará, Belém, Belém, 2010.

TIBCO Software Inc., USA-Statistica 14.0, 2020.

TRIOLA, M. F. Introdução à Estatística. Rio de Janeiro: LTC, 1999.

YAğMUR, H. K.; KAYA İsmet. Synthesis and characterization of magnetic zncl2-activated carbon produced from coconut shell for the adsorption of methylene blue. **Journal of Molecular Structure**, v. 1232, p. 130071, 2021.