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ABSTRACT 

Considering the recurring events of mass movements and the complexity associated with their causality, as well as 

the severe socio-environmental consequences triggered by them, it is essential to predict the regions susceptible to 

this phenomenon. In this context, the objective of this study was to develop a method for analyzing susceptibility to 

mass movements, implemented in the region of Itupararanga’s Environmental Protection Area (EPA), through the 

creation of a Mamdani-type Fuzzy inference system. Satellite images and other spatial data were used to create the 

environmental, pedological, and topographic subsystems, which generated a final output used to classify 

susceptibility into categories of: very high, high, moderate, low, and very low. The results indicate that areas with 

higher potential flow index and soil saturation showed higher susceptibility. Additionally, the presence of vegetation 

and soil type were also determining factors. The final susceptibility map highlighted areas in the north/northwest and 

south/southeast as highly susceptible to these events, while other regions showed moderate susceptibility. This study 

provides valuable information for the planning and proper management of areas vulnerable to mass movements.  

 

KEY-WORDS: EPA. mass movements. Mamdani. Susceptibility. 

 

1. INTRODUCTION  

 

Mass movements refer to gravitational displacements, where material is transported 

by the force of gravity at high speeds (PRANCEVIC et al., 2020). The process is related to the 

continuous infiltration of rainwater in specific regions with steep slopes, which have soils with 

saturated pores and higher density (ZHANG et al., 2023). The soil triggers plasticity and high 

density, starting to have less cohesion between particles, as well as the slope stability angle, 

leading to an abrupt rupture of the soil (ISMLAM et al., 2021). 

Among the causes of mass movements, there are natural and anthropogenic factors 

(SANTOS et al., 2020). Natural factors are triggered by intense rainfall, with high cumulative 

rainfall indices, and terrain predispositions (soil morphology, topography, slope, vegetation), 

while anthropogenic causes result from the suppression of vegetation cover and land use and 

occupation (FONSECA et al., 2014). 

Therefore, vegetation cover is essential in mitigating and preventing mass movements, 

as it increases soil resistance to shear through root cohesion (COMEGNA et al., 2020). During 

precipitation events, leaves intercept water droplets and decrease infiltration, preventing soil 

saturation. Additionally, they reduce soil saturation levels by extracting water through root 

transpiration. However, their presence does not always guarantee stability, as the interaction 

between vegetation and soil conditions is complex (PELASCINI, 2023).  

Deaths, burying of individuals, injuries, and other fatalities are common in cases of 

mass movements in inhabited areas. Material damages, high-cost maintenance, losses of 

homes, and other civil constructions also lead to economic losses in the region affected by a 

disaster. Thus, mass movements are considered environmental and social disasters, as, in 

addition to environmental damages such as loss of vegetation cover, erosion, and siltation of 

water bodies, they can result in tragedies for humans and animals (BAZÁN et al., 2023; UN, 2023; 

VIEIRA et al., 2023). 

Regarding mass movements, susceptibility refers to the predisposition or propensity 

of terrains to develop this phenomenon (SILVA; AMORIM, 2023), and its determination is 

essential, especially in watershed management, as it informs land use planning and control, as 

well as urban expansion restriction (COROMINAS et al., 2014). 
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To assess this phenomenon, physical, statistical, and knowledge-based evaluation 

methods are often employed. While the first two are considered traditional and costly, the 

latter, based on the expertise of specialists in the field, stands out for its generalization capacity 

and can be implemented through artificial intelligence systems (OSNA et al., 2014; NERY; VIEIRA, 

2014). Within this scope are Fuzzy Sets, considered a class of objects with continuous degrees 

of membership, proposed by Zadeh (1965), where approximations and uncertainties are 

admitted in contrast to the binary systems of classical logic. 

Furthermore, the membership of a Fuzzy set does not infer affirmatives or negatives; 

instead, it proposes that elements be classified into levels of membership in different sets 

(DENG; DENG, 2021). Thus, the membership value can take any value between the interval of 0 

to 1, where 0 indicates total exclusion and 1 indicates total membership. Moreover, membership 

sets present various association functions, such as Triangular, Trapezoidal, Sigmoidal, Sine, and 

Gaussian Combination (YAZDANBAKHSH; DICK, 2018). 

Although the reasoning is approximate, the product of the Fuzzy proposition is exact, 

and there are different methods for obtaining precise classical values, a process named 

defuzzification. Commonly employed methods in this stage include the maximum criterion 

(MAX), the mean of maximums (MOM), and the center of area method (CDA) (GREENFIELD, 

2018; PRAHARAJ; MOHAN, 2021; TAIRIDIS et al., 2016). 

According to Greenfield and Chiclana (2013), a Fuzzy inference system has several 

steps, with the first being the fuzzification of numerical variables, converting the data into fuzzy 

sets to capture uncertainty. Next, linguistic variables and their values are identified based on 

specialized knowledge and data analysis. Subsequently, a set of if -then rules is developed to 

describe the relationships between input and output variables. The partial results of the rules 

are aggregated to generate the final output of the Fuzzy system. Finally, the fuzzy output is 

defuzzified to convert it into precise values, allowing for a concise interpretation of the re sults. 

Given that Mamdani-type Fuzzy inference systems are commonly applied in mapping 

susceptibility to gravitational mass movements when integrated with Geographic Information 

Systems (GIS) (SOARES et al., 2022), the present study aims to develop a method for analyzing 

susceptibility to mass movements in an Environmental Protection Area (APA). This involves 

incorporating topographic, environmental, and pedological variables to develop a fuzzy 

inference system model that allows for the identification of areas susceptible to mass 

movements. 

 

2. METHODOLOGY  

2.1. Study Field 

 

The object of study is the Conservation Unit (CU) designated as Itupararanga’s 

Environmental Protection Area (EPA) (Figure 1), established by State Law No. 10,100, dated 

December 1, 1998, and amended by State Law No. 11,579, dated December 2, 2003. It covers 

an approximate territorial extension of 936.51 km² and is located between the municipalities of 

Ibiúna, São Roque, Mairinque, Alumínio, Vargem Grande Paulista, Cotia, Votorantim, and 

Piedade, all in the state of São Paulo (SP) (FUNDAÇÃO FLORESTAL; SMA; SÃO PAULO, 2007).  
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Figure 1 – Location Map 

 
Source: The authors, 2024. 

 

2.2. Data collection and processing  

 

Initially, it is emphasized that the methodology adopted in this article was based on the 

study conducted by Vieira et al. (2023), which employed the same input and output variables. 

However, in this context, three new subsystems were adjusted to enhance the accuracy of the 

analyzed data. 

For the development of the work proposal, seven input variables were established, 

corresponding to altitude, slope, curvature, topographic wetness index (TWI), stream power 

index (SPI), soil pedology, and normalized difference vegetation index (NDVI). 

The information used for the project development was acquired from the databases 

of government entities such as the National Institute for Space Research (INPE in Portuguese) 

and the Brazilian Agricultural Research Corporation (Embrapa in Portuguese). From these 

sources, the corresponding data for the digital elevation model (DEM) were obtained for 

calculating variables such as slope, curvature, topographic wetness index (TWI) (Equation 1), 

and stream power index (SPI) (Equation 2), as well as soil vulnerability, which is obtained from 

the pedology of the area. 

 

𝑇𝑊𝐼 = 
α

tan 𝛽 + C
         (1) 

 

Where: 

α: flow accumulation 

β: slope 

C: 0.001 

𝑆𝑃𝐼 = ln(α + 0.001) ∗ ((
β

100
) + 0.001)         (2) 
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 It's important to add that in the case of NDVI, it was calculated from bands 4 and 5, 

according to Equation (3), which correspond to the red and near-infrared of the LANDSAT 8-OLI 

satellite image, acquired from the United States Geological Survey (USGS) website.  
 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
           (3) 

 

Where: 

NIR: Infrared 

RED: Red 

 

2.3. Development of the Fuzzy System 

 

The system was developed so that it can be applied to any field of study, establishing 

the minimum and maximum possible values for each variable. 

 

2.3.1. Fuzzification 

 

From the data acquisition and processing, intervals were established for each variable 

with the assistance of specialized literature, which approaches the classification of the studied 

variables. Then, linguistic variables and their membership functions were defined for each input 

based on these identified ranges. 

Regarding system 1, the variables identified were the data corresponding to TWI and 

SPI. For system 2, the input variables are altitude, slope, curvature, and soil pedology, also 

considered as vulnerability. In the final system, the variables NDVI, the output of system 1, and 

the output of system 2 were included. 
 

Figure 2 - Linguistic values of the first system A) SPI B) TWI C) Output 1 
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Source: The Authors, 2024. 

 

. Regarding the linguistic variables, the input ones were divided into two intervals (Low 

and High), as shown in Figure 2A and 2B. However, the output variables were established in 

three, defined as high, moderate, and low, as depicted in Figure 2C.  

For system 2, as visualized in Figure 3, for Altitude (Figure 3A) and Soil Pedology 

(vulnerability) (Figure 3B), low, medium, and high were established. As for Slope (Figure 3C) and 

Curvature (Figure 3D), two intervals of high and low were defined. Finally, for the system output 

(Figure 3E), five output classes were generated: very high, high, moderate, low, and very low.  

 

Figure 3 - Linguistic values for system two: A) Vulnerability B) Altitude C) Slope D) Curvature E) Output 2 
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Source: The Authors, 2024. 

 

Finally, the final system, as visualized in Figure 4, is composed of the variables NDVI 

(Figure 4A), output of system 1 (Figure 2C), and output of system 2 (Figure 3E), with intervals of 

low and high established for NDVI and five output classes generated for the susceptibility of the 

study area (Figure 4B). 
 

Figure 4 –Linguistic values for the final system 

 
 

 
Source: The Authors, 2024. 

 

2.3.2. Knowledge base  

 

The developed system is of the Mamdani type, which rules are based on the If A Then 

B system, where the total number of rules was determined by the quantity of classes for each 

variable (SILVA et al., 2021). Furthermore, a visualization surface of the behavior of each system 

was created, aligned with the input variables. 
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In the knowledge bases depicted in Figure 5, it is possible to observe the surface 

generated for systems 1, 2, and 3, represented by Figures 5A, B, and C, respectively.  

To clarify understanding, rules were established for each system, also respectively 

arranged.  

 
Figure 5 – Knowledge base: surface (A) System 1 (B) System 2 (C) System 3 

 

 
Source: The Authors, 2024. 

 

From Table 1, it's possible to identify that 4 rules were generated for the Surface of 

System 1. Meanwhile, in System 2, due to having the highest number of input variables, the 

largest number of rules was established, totaling 36, which were defined based on the literature 

(Table 2). Finally, for the last system, 18 rules were established with 5 output classes (Table 3).  

 

 

         Source: The Authors, 2024. 

 

 

TWI SPI Result 

Low Low Low 

Low High Moderate 

High Low Moderate 

High High High 

Curvature Altitude Slope Vulnerability Result 

Low Low Low Low Low 

Low Low Low Moderate Average 

Low Low Low High High 

Low Low High Low High 

Low Low High Moderate High 

Low Low High High High 

High Low Low Low 

Very 

Low 

High Low Low Moderate Very Low 

High Low Low High Low 

High Low High Low Low 

High Low High Moderate Average 

High Low High High High 

Low Moderate Low Low Average 

Low Moderate Low Moderate High 

Low Moderate Low High High 

Low Moderate High Low High 

Low Moderate High Moderate High 

Table 1 – Rules of System 1. Table 2 – Rules of System 2 
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Low Moderate High High Very High 

High Moderate Low Low Very Low 

High Moderate Low Moderate Low 

High Moderate Low High Average 

High Moderate High Low Average 

High Moderate High Moderate High 

High Moderate High High High 

Low High Low Low High 

Low High Low Moderate High 

Low High Low High High 

Low High High Low High 

Low High High Moderate Very High 

Low High High High Very High 

High High Low Low Low 

High High Low Moderate Average 

High High Low High High 

High High High Low High 

High High High Moderate High 

High High High High High 

                                                                       Source: The Authors, 2024. 

 
 
 
 
 

NDVI Índices Topografía Resultado 

Low Low Low Low 

Low Low Moderate Moderate 

Low Low High High 

Low Moderate Low Moderate 

Low Moderate Moderate High 

Low Moderate High Very High 

Low High Low High 

Low High Moderate Very High 

Low High High Very High 

High Low Low Very Low 

High Low Moderate Very Low 

High Low High Low 

High Moderate Low Very Low 

High Moderate Moderate Low 

High Moderate High Moderate 

High High Low Low 

High High Moderate Moderate 

High High High High 

   Table 3 – Rules of System  3 
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Source: The Authors, 2024. 

Note: The use of colors in the guidelines of the systems is a way to describe the influence of variables on mass 
movements. Red represents a significant contribution to the occurrence of these movements, while green indicates 
a lower risk associated with them. 

 
2.3.3. Defuzzification 
 

The centroid defuzzification method was chosen, which is based on summing the 

centers to calculate a crisp value, used to create a landslide susceptibility map in ArcGIS.  

 

3. RESULTS AND DISCUSSION 

 

For the 3 systems, 7 variables were used, allocated within each system's categories. 

Four rules were obtained for the climate variable system, 36 rules for the topographic variable 

system, and to the final system, the outputs of the previous systems were added to the 

environmental variable, resulting in a total of 18 rules.  

In Figure 6, the values of the climatic variables used in the first system are visualized. 

In the case of TWI (Figure 6A), the values within Itupararanga’s EPA range from 3.81 to 18.31, 

which, as stated by Milevski et al. (2009), the higher the potential flow index, the higher the 

probability of mass movement occurrence. Due to the soil saturation level, based on the values 

identified for the study area, the area is classified as moderately susceptible (SINGH et al., 2021). 

Figure 6 - Climatic variables: A) TWI and B) SPI 

 

Source: The Authors, 2024. 
 

The SPI (Figure 6B) is evaluated as an important measure for identifying susceptibility 

to mass movements, considering the spatial distribution of moisture in the terrain, taking into 

account factors such as topography and vegetation (CHEN; CHANG, 2016). According to Oh and 

Pradhan (2011), through topographic moisture, it is possible to identify areas where water tends 

to accumulate. Areas with high SPI are more susceptible to mass movements because soil 

saturation reduces resistance and cohesion, promoting instability and mass movements. The 

values ranged from -4.588 to 2.23, thus, the areas are classified as moderately and strongly 

susceptible. 
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Figure 7 highlights the topographic variables represented by altitude (Figure 7A), 

curvature (Figure 7B), pedology (Figure 7C), and slope (Figure 7D), used as input in the second 

system. 
Figure 7 - Topographic variables: A) Altitude, B) Curvature, C) Pedology, and D) Slope 

Source: The Authors, 2024. 
 

According to Gholami et al. (2019), higher altitude areas indicate lower temperatures 

and higher precipitation, which increases soil saturation. When associated with mountainous 

regions, these areas typically have steeper terrains, making them more susceptible to mass 

movements. Altitude influences soil characteristics, resulting in high concentrations of clay 

and/or undecomposed rock materials, defined by greater fragility and lower cohesion. 

Additionally, in Itupararanga’s Environmental Protection Area (EPA), an altimetric variation 

between 824.10 and 1200.76 m was observed. 

Regarding curvature, Altin and Gökkaya (2018) state that convex curvatures reduce 

the amount of water that can infiltrate the soil, decreasing its saturation and thus reducing the 

probability of mass movements. However, concave and flat curvatures tend to increase the 

amount of water that can infiltrate the soil, leading to a higher susceptibility to mass movement. 

Therefore, based on the values obtained for curvature in the study area,  this variable is 

categorized as moderately susceptible. 

According to Viera et al. (2023), pedology is determinant for mass movements, as soils 

with a higher sand content tend to be more susceptible to such events compared to clayey soils. 

The Acrisol soil class is considered intermediate, with shallower depth, less stability, and 

impermeability. On the other hand, Latosols have greater depth and porosity, leading to more 

stability. Cambisols and Gleysols are recognized as younger soils and exhibit greater vulnerability 

to mass movements (SILVEIRA et al., 2014; IBGE, 2019). 
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In the study area, mainly Acrisol soils are found, covering an area of 211,373.49 ha, 

representing 59.73% of the study area, followed by Latosols with 95,225.96 ha (26.91%), 

Cambisols with 41,032.90 ha (11.60%), and Gleysols with 6,226.97 ha (1.76%). 

Consequently, the terrain slope can play a significant role in the susceptibility of an 

area to mass movements. Steeper terrains have a higher potential for such events because they 

are more susceptible to erosion when devoid of vegetation, where mass move ments can occur 

more rapidly and with greater magnitude (IBGE, 2019; SIMONETTI et al., 2022). 

Regarding the environmental variable represented by NDVI (Figure 8), it is known that 

values close to 1 indicate significant vegetation vigor, while values close to 0 suggest sparser 

vegetation, and negative values indicate the presence of water bodies or urban areas (LI; DUAN, 

2024). 

In the study area, NDVI values ranged from approximately -0.22 to 0.88, with a 

predominance of intermediate values, as highlighted on the map by the representation of the 

color yellow, indicating a moderate amount of vegetation, subject to fluctuations according to 

environmental and seasonal conditions (NIRAJ et al., 2023; RIZZO et al., 2023).  

 

Figure 8 - Environmental variable: NDVI 

Source: The Authors, 2024. 

 

Regarding the final map of susceptibility to mass movements (Figure 9), areas 

identified as having very high susceptibility are mainly located in the northern/northwestern 

and southern/southeastern portions of the study area, with a high prevalence of this 

classification. 
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Figure 9 - Susceptibility to mass movements 

Source: The Authors, 2024. 

 

Predominantly, the rest of the area exhibits moderate susceptibility, with significant 

evidence of high susceptibility throughout the entire extent of the EPA. The gray portions were 

excluded from the assessment as they are categorized as urban areas, rivers, and water bodies. 

It is observed that in areas where there is a combination of low to moderate vegetation 

presence, along with the predominant Acrisols in the region, characterized as vulnerable, this is 

where areas with very high susceptibility to mass movements are concentrated.  

Furthermore, variables such as TWI and SPI indicate a higher probability of mass 

movements in areas with higher flow potential and soil saturation indices. Topographic 

characteristics, such as altitude, curvature, and slope, also contributed, showing that areas with 

higher altitude and concave curvature tend to be more susceptible.  
 

4. CONCLUSION 

 

The study demonstrated the effectiveness of using Fuzzy inference systems in 

analyzing susceptibility to mass movements in Itupararanga’s EPA, as well as integrating 

topographic, environmental, and pedological variables. Thus, making it possible to identify areas 

at high risk of mass movements and providing significant information regarding the analysis of 

vulnerable areas.  

The results indicated that the study area is predominantly vulnerable to mass 

movements, with high susceptibility in the northern/northwestern and southern/southeastern 

regions. Topographic variables such as altitude, curvature, and slope played a crucial role in 

identifying these high-risk areas. Therefore, there is a need to implement mitigation measures 
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to enable proper planning and management of vulnerable areas, thus promoting environmental 

and population safety in the region. 
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