Saúde, Saneamento e Meio Ambiente

Titulo do Trabalho

APLICAÇÃO DO COAGULANTE TANINO NO TRATAMENTO DA VINHAÇA EM pH NEUTRO

Nome do Autor (a) Principal

Vitor Amigo Vive

Nome (s) do Coautor (a) (s)

Maria Cristina Rizk, Pedro Miguel Alves Almeida

Nome (s) do Orientador (a) (s)

Maria Cristina Rizk

Instituição ou Empresa

Universidade Estadual Paulista "Júlio de Mesquita Filho" – Faculdade de Ciências e Tecnologia – Campus de Presidente Prudente

Instituição (s) de Fomento

FAPESP

E-mail de contato

vitorvive@hotmail.com

Palavras-chave

Vinhaça. Coagulação/floculação. Tanino.

1. INTRODUÇÃO

Vinhaça, efluente produzido a partir de processos de destilação do álcool, é um líquido denso, de cor escura, com carga orgânica elevada e pH ácido (ZAYAS *et al.*, 2007). Geralmente, o teor de matéria orgânica da vinhaça é equivalente a uma demanda

Saúde, Saneamento e Meio Ambiente

biológica de oxigênio (DBO₅) na ordem de 25.000 mg.L⁻¹ a 45.000 mg.L⁻¹ e uma demanda química de oxigênio (DQO) de 70.000 mg.L⁻¹ a 120.000 mg.L⁻¹, onde se tem como consequência um poder altamente poluente e, considerando-se que a produção de 1 tonelada de álcool anidro gera 16 m³ de vinhaça, em média, a eliminação da vinhaça representa um passivo ambiental grave (VLYSSIDES *et al.*, 1997).

O sistema de tratamento físico-químico de coagulação/floculação/sedimentação com coagulantes naturais vem sendo estudado no tratamento de diferentes tipos de efluentes, podendo assim ser empregado no tratamento da vinhaça. Vários estudos utilizando o tanino vegetal têm mostrado que este coagulante possui propriedades efetivas e não tóxicas aos seres humanos e animais (MORAES *et al.* 2007; NAGASHIMA, 2009).

O tanino é um coagulante vegetal efetivo numa ampla faixa de pH, que elimina o uso de alcalinizantes (como soda ou cal), não acrescenta metais ao processo e proporciona uma redução no volume de lodo a ser descartado. Ainda, devido a sua composição orgânica, pode ser biologicamente degradado ou eliminado termicamente (ÖZACAR e SENGIL, 2003).

2. OBJETIVO GERAL

Este estudo tem por objetivo investigar o emprego de tanino no tratamento da vinhaça em pH neutro.

3. OBJETIVOS ESPECÍFICOS

Os objetivos específicos referem-se à variação da concentração de tanino, visando à remoção de cor, DQO e turbidez.

4. METODOLOGIA

O efluente utilizado neste trabalho foi coletado numa Usina de Açúcar e Álcool do oeste paulista, no período da safra de cana-de-açúcar (março de 2013). As amostras foram armazenadas em galões de 5 litros e conservadas a temperatura abaixo de 10°C até o seu uso.

Saúde, Saneamento e Meio Ambiente

A vinhaça foi caracterizada em termos de cor aparente e DQO (APHA, 1998) utilizando-se um espectrofotômetro HACH modelo DR3900. O pH foi determinado no pHmetro HANNA modelo HI 221 e a turbidez no espectrofotômetro HANNA modelo HI 88703.

Os ensaios de coagulação/floculação/sedimentação ocorreram em aparelho *jar-test* simples de seis provas, com regulador de rotação das hastes misturadoras, em temperatura ambiente.

Nos ensaios, era utilizado um volume de 200 mL de vinhaça *in natura*, ao qual eram adicionadas diferentes concentrações do coagulante tanino vegetal, baseado no estudo de Girardi (2009). Foram preparadas soluções de tanino a 10% (v/v). A partir da adição do coagulante, as amostras foram sujeitas à agitação rápida por 1 minuto (mistura rápida 100 rpm) e à agitação lenta por 30 minutos (mistura lenta 50 rpm).

Foram realizados 6 ensaios de coagulação/floculação/sedimentação (3 condições distintas e suas repetições), variando-se a concentração de coagulante tanino (2,85; 5,70 e 11,40 g/L), onde a faixa de pH escolhida foi de 7,0 (pH neutro). Todos os tratamentos foram avaliados em termos da eficiência de remoção de cor, DQO e turbidez. As variáveis de resposta foram lidas em duplicata.

O ajuste de pH foi feito com solução de ácido clorídrico 25% e de solução de hidróxido de sódio 50%.

Após a coagulação/floculação, as amostras permaneceram em repouso por um período de 24 horas, para sedimentação dos flocos formados. O sobrenadante foi analisado em termos de cor, DQO e turbidez.

5. RESULTADOS

Antes de cada ensaio foram determinados os valores de cor, DQO, turbidez e pH do efluente. A Tabela 1 apresenta as variações encontradas para cada parâmetro analisado.

Tabela 1 – Variações dos parâmetros físico-químicos no efluente bruto

Parâmetro	Variação dos valores
Cor Aparente (mg PtCo.L ⁻¹)	13250 a 24400

Saúde, Saneamento e Meio Ambiente

pH	4,65 a 4,80
DQO (mg $O_2.L^{-1}$)	11105 a 16734
Turbidez (NTU)	998 a 2010

A Figura 1 apresenta os resultados de remoção de cor, DQO e turbidez na faixa de pH 7,0 para as respectivas concentrações de coagulante tanino.

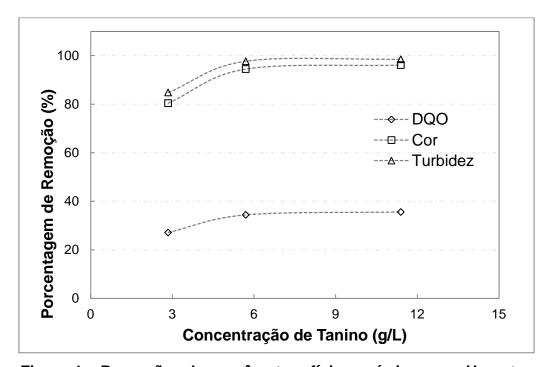


Figura 1 – Remoções dos parâmetros físico-químicos no pH neutro

A partir dos resultados apresentados na Tabela 1 é possível verificar as elevadas concentrações dos parâmetros físico-químicos, o que dificulta o tratamento da vinhaça.

De acordo com a Figura 1 pode-se constatar que todos os ensaios apresentaram remoção dos parâmetros físico-químicos, onde se percebe uma relação diretamente proporcional entre a eficiência de remoção com a concentração do coagulante tanino.

A melhor remoção de cor ocorreu na concentração de 11,4 g/L com resultado de aproximadamente 96%, seguido da concentração de 5,70 g/L que apresentou em torno de 94% de remoção deste parâmetro e da concentração de 2,85 g/L que removeu em torno de 80%.

Saúde, Saneamento e Meio Ambiente

Na remoção de DQO o melhor resultado foi apresentado na concentração de 11,4 g/L de coagulante tanino com aproximadamente 36%. O segundo melhor resultado ocorreu na concentração de 5,70 g/L com cerca de 34%, seguido da concentração de 2,85 g/L com 27%.

No que diz respeito à remoção de turbidez, foram alcançados resultados de aproximadamente 98, 98 e 85% nas concentrações de 11,4; 5,70 e 2,85 g/L, respectivamente.

Assim, neste trabalho, como também encontrado por Girardi (2009), Moraes *et al.* (2007) e Nagashima (2009), o tanino mostrou-se eficaz e sendo eficiente na remoção da DQO, e muito eficiente na remoção da turbidez e da cor do efluente.

6. CONSIDERAÇÕES FINAIS

Os ensaios de coagulação/floculação/sedimentação utilizando o coagulante natural tanino obtiveram altas remoções de cor e turbidez e médias remoções de DQO.

De acordo com os resultados, as maiores remoções dos parâmetros físicoquímicos ocorreram na maior concentração de tanino testada, isto é, na concentração de 11,4 g/L, sendo que obteve-se 96, 36 e 98% de remoção de cor, DQO e turbidez, respectivamente. Assim, comprova-se a existência de uma relação diretamente proporcional entre a eficiência de remoção dos parâmetros físico-químicos com a concentração de coagulante tanino.

REFERÊNCIAS

APHA – American Public Health Association. Standard methods for the examination of water and wastewater. Washington D.C., 20th ed, 1998.

GIRARDI, F. **Tratamento de vinhaça utilizando coagulantes naturais**. Maringá: UEM, 2009. 56 p. Dissertação (Mestrado) – Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá, Maringá, 2009.

MORAES, L. C. K; BERGAMASCO, R.; TAVARES, C. R. G; HENNIG, D.; BONGIOVANI, M.C. Avaliação da eficiência de remoção de cor e turbidez, utilizando como agente

Saúde, Saneamento e Meio Ambiente

coagulante os taninos vegetais, com a finalidade de obtenção de água tratada. In: 24º Congresso Brasileiro de Engenharia Sanitária e Ambiental, 2007, Belo Horizonte, MG. NAGASHIMA, L. A. Monitoramento do Lixiviado em Lagoa de Estabilização e Estudo da Aplicabilidade do Reagente Fenton e do Coagulante Vegetal Tanino como Formas de Tratamento. Tese de Doutorado — Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá, Maringá, PR, 2009.

ÖZACAR, M.; SENGIL, I. A. Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. *Colloids and Surfaces A: Physicochem.* Eng. Aspects, v. 229; p. 85-96, 2003.

VLYSSIDES, A.G.; ISRAILIDES, C.J.; LOIZIDOU, M. **Electrochemical treatment of vinasse from beet molasses.** *Water Sciency Technology*, v. 36, n. 2-3, p. 271–278, 1997.

ZAYAS, T.; RÓMERO, V.; SALGADO, L.; MERAZ, M.; MORALES, U. **Applicability of coagulation/flocculation and electrochemical processes to the purification of biologically treated vinasse effluent**. *Separation and Purification Technology*, v. 57, p. 270-276, 2007.