

Multidimensional Concept for Smart City Urban Planning: From Technological Innovation to Human and Institutional Integration

Allan Leon Casemiro da Silva

Postdoctoral Researcher, PPGAU-UNIVAG, Brazil

allan.leon@unesp.br

ORCID iD 0000-0002-2397-3492

Jeane Aparecida Rombi de Godoy

PhD Professor, PPGAU-UNIVAG, Brazil

jeane.godoy@univag.edu.br

ORCID iD 0000-0003-4577-4651

Submissão: 15/02/2025

Aceite: 08/05/2025

SILVA, Allan Leon Casemiro da; GODOY, Jeane Aparecida Rombi de. Conceito multidimensional para o planejamento urbano de cidades inteligentes: da inovação tecnológica à integração humana e institucional. **Periódico Eletrônico Fórum Ambiental da Alta Paulista**, [S. I.], v. 21, n. 1, 2025. DOI: [10.17271/1980082721120255730](https://doi.org/10.17271/1980082721120255730). Disponível em: https://publicacoes.amigosdanatureza.org.br/index.php/forum_ambiental/article/view/5730 Licença de Atribuição CC BY do Creative Commons <https://creativecommons.org/licenses/by/4.0/>

Conceito multidimensional para o planejamento urbano de cidades inteligentes: da inovação tecnológica à integração humana e institucional

RESUMO

Objetivo – Analisar e propor um modelo conceitual integrado para o planejamento urbano de cidades inteligentes, com base na articulação entre as dimensões tecnológica, humana e institucional.

Metodologia – Estudo teórico-conceitual desenvolvido por meio de revisão sistemática e análise crítica da literatura interdisciplinar nos campos do urbanismo, ciência da informação, governança pública e ética digital.

Originalidade/relevância – O estudo contribui para preencher lacunas relacionadas à visão tecnocêntrica predominante em abordagens sobre cidades inteligentes, propondo uma estrutura multidimensional fundamentada em princípios de sustentabilidade, justiça urbana e participação cidadã.

Resultados – O artigo propõe um modelo conceitual multidimensional, no qual a tecnologia é mediada por instituições públicas transparentes e orientada pelas demandas sociais, gerando soluções urbanas contextualizadas, éticas e inclusivas.

Contribuições teóricas/metodológicas – A principal contribuição teórica está na formulação de um framework analítico relacional para o planejamento urbano inteligente. Do ponto de vista metodológico, o artigo sistematiza referências de múltiplas disciplinas em uma abordagem integradora e replicável.

Contribuições sociais e ambientais – O modelo proposto favorece o desenvolvimento de cidades mais resilientes, equitativas e sustentáveis, reforçando práticas de governança democrática, empoderamento cidadão e redução de desigualdades territoriais.

PALAVRAS-CHAVE: Planejamento Urbano Inteligente. Governança Urbana. Inclusão Digital.

Multidimensional Concept for Smart City Urban Planning: From Technological Innovation to Human and Institutional Integration

ABSTRACT

Objective – To analyze and propose an integrated conceptual model for the urban planning of smart cities, based on the articulation of technological, human, and institutional dimensions.

Methodology – Theoretical-conceptual study developed through systematic review and critical analysis of interdisciplinary literature in the fields of urbanism, information science, public governance, and digital ethics.

Originality/relevance – This study contributes to filling gaps related to the prevailing technocentric view in smart city approaches, by proposing a multidimensional framework grounded in the principles of sustainability, urban justice, and citizen participation.

Results – The article proposes a multidimensional conceptual model, in which technology is mediated by transparent public institutions and oriented by social demands, resulting in contextualized, ethical, and inclusive urban solutions.

Theoretical/methodological contributions – The main theoretical contribution lies in the formulation of a relational analytical framework for smart urban planning. Methodologically, the article systematizes references from multiple disciplines into an integrative and replicable approach.

Social and environmental contributions – The proposed model supports the development of more resilient, equitable, and sustainable cities, reinforcing practices of democratic governance, citizen empowerment, and the reduction of territorial inequalities.

KEYWORDS: Smart Urban Planning. Urban Governance. Digital Inclusion.

Concepto Multidimensional para la Planificación Urbana de Ciudades Inteligentes: De la Innovación Tecnológica a la Integración Humana e Institucional

RESUMEN

Objetivo – Analizar y proponer un modelo conceptual integrado para la planificación urbana de ciudades

inteligentes, basado en la articulación entre las dimensiones tecnológica, humana e institucional.

Metodología – Estudio teórico-conceptual desarrollado a través de una revisión sistemática y análisis crítico de la literatura interdisciplinaria en los campos del urbanismo, ciencia de la información, gobernanza pública y ética digital.

Originalidad/relevancia – Este estudio contribuye a llenar vacíos relacionados con la visión tecnocéntrica dominante en los enfoques sobre ciudades inteligentes, al proponer un marco multidimensional fundamentado en los principios de sostenibilidad, justicia urbana y participación ciudadana.

Resultados – El artículo propone un modelo conceptual multidimensional, en el que la tecnología es mediada por instituciones públicas transparentes y orientada por las demandas sociales, generando soluciones urbanas contextualizadas, éticas e inclusivas.

Contribuciones teóricas/metodológicas – La principal contribución teórica está en la formulación de un marco analítico relacional para la planificación urbana inteligente. Desde el punto de vista metodológico, el artículo sistematiza referencias de múltiples disciplinas en un enfoque integrador y replicable.

Contribuciones sociales y ambientales – El modelo propuesto favorece el desarrollo de ciudades más resilientes, equitativas y sostenibles, reforzando las prácticas de gobernanza democrática, empoderamiento ciudadano y reducción de desigualdades territoriales.

PALABRAS CLAVE: Planificación Urbana Inteligente. Gobernanza Urbana. Inclusión Digital.

1 INTRODUCTION

In recent decades, cities have been increasingly confronted with challenges associated with rapid population growth, unplanned urbanization, and the socio-environmental impacts resulting from these transformations (Bukhari; Alshibani; Ali, 2024). These challenges include, notably, environmental degradation, deficiencies in urban infrastructure, mobility issues, and the fragility of governance systems in responding to contemporary demands (Fiálová et al., 2021; MacLachlan et al., 2021).

Within this context, new urban planning approaches have emerged, incorporating advanced technologies, innovative governance models, and the enhancement of citizen participation as alternatives to address such challenges. Among these approaches, the concept of smart cities stands out. This is understood as an urban strategy that employs digital technologies and participatory processes to enhance operational efficiency, improve citizens' quality of life, and promote urban sustainability (Javed et al., 2022; Lim; Cho; Kim, 2021; Harrison et al., 2010).

The term "smart cities" has gained prominence in urban studies following the integration of information and communication technologies (ICTs) into public planning and management processes (Dembski et al., 2020; Batista and Rezende, 2019). Nevertheless, despite its growing popularity, the definition of the concept remains surrounded by ambiguities and divergent interpretations (Bukhari; Alshibani; Ali, 2024).

Hollands (2008) warns that the term is often co-opted to serve corporate interests, while Komninos (2013) argues that true urban intelligence lies in the capacity to combine human knowledge with digital infrastructure. For Nam and Pardo (2011), for example, a smart city is not merely characterized by the intensive use of digital technologies, but rather involves a fundamental triad composed of technological, human, and institutional dimensions, which must remain in continuous interaction to enable effective urban transformation.

From this perspective, urban planning for smart cities requires an integrated approach that considers not only available technologies, but also human capabilities, institutional arrangements, and local social dynamics (Jacques et al., 2024; Bukhari; Alshibani; Ali, 2024; Antrobus, 2011).

Studies such as those by Albino, Berardi, and Dangelico (2015) reinforce the importance of multidimensional strategies to ensure urban sustainability and resilience. Indeed, the relevance of the human dimension is evident in the active participation of citizens, the valorization of social capital, and the adaptation of technological solutions to the real needs of the population (Åström, 2020; Meijer; Rodriguez Bolívar, 2016). Similarly, the institutional dimension is manifested in the necessity of organizational arrangements capable of supporting and enabling intersectoral collaboration, thus promoting effective and adaptive public policies (Berglund-Snodgrass; Mukhtar-Landgren, 2020; Layne; Lee, 2001).

In this regard, the primary objective of this article is to construct an integrated conceptual framework for urban planning in smart cities, explicitly articulating technological,

human, and institutional dimensions. To this end, a critical reflection is proposed, grounded in a theoretical-conceptual review of specialized literature, aiming to identify the interactions among these dimensions and provide a solid foundation for future studies and practical applications.

This study is justified by the need to deepen the conceptual debate around smart cities, especially in urban contexts marked by rapid transformations, multiple challenges, and the complex demands of contemporary society. The relevance of this discussion lies not only in expanding academic knowledge on the subject but also in contributing to the formulation of more consistent public policies tailored to local realities. This effort is aligned with the 2030 Agenda for Sustainable Development, particularly with Sustainable Development Goal (SDG) 11, which aims to make cities and human settlements inclusive, safe, resilient, and sustainable (UN-HABITAT, 2020).

The article is structured as follows: it begins with a conceptual review of urban planning and smart cities; it then explores in depth the technological, human, and institutional dimensions, articulating them into an integrated conceptual model; subsequently, it analyzes the implications and challenges of this model for current urban planning; and finally, it presents recommendations and future perspectives for research and implementation.

2 THEORETICAL FRAMEWORK

Beyond the often-emphasized technological dimension, it is essential to consider the multi-conceptual nature of smart cities, incorporating social, environmental, economic, and institutional aspects that are fundamental to their configuration as a contemporary paradigm of urban development.

In this context, a critical analysis is proposed of the interrelationship between the concept of smart cities and urban planning, with an emphasis on identifying the structural elements that underpin the articulation among technological, human, and institutional dimensions. This articulation is examined through the lens of the guiding principles of sustainability, urban resilience, and democratic governance, which confer legitimacy, effectiveness, and adaptability to urban strategies aimed at constructing smarter, more inclusive territories that are responsive to the complexities of contemporary society.

2.1 Smart Cities and Urban Planning: Concepts and Foundations

The term "smart cities" has been widely disseminated in recent academic literature, being recognized as a multidimensional and interdisciplinary phenomenon. Although it initially emerged in association with the development and intensive use of Information and Communication Technologies (ICTs), the concept is now understood in a broader and more complex manner, incorporating social, environmental, economic, and institutional concerns (Mora et al., 2017; Lim; Cho; Kim, 2021; Harrison et al., 2010).

According to Nam and Pardo (2011), smart cities can be understood as urban environments that utilize advanced technologies to significantly improve citizens' quality of life,

efficiently manage resources, and optimize urban services (Benini et al., 2024). However, the authors emphasize that the smart city approach should not be limited solely to technological applications but must be conceived as a continuous interaction among three fundamental dimensions: technological, human, and institutional. Komninos (2013) reinforces this perspective by asserting that truly smart cities integrate knowledge, human capital, and digital technologies within an urban innovation ecosystem.

Castelnovo, Misuraca, and Savoldelli (2016) argue that smart cities are those that prioritize the integration of technological infrastructure, human capital, and innovative governance mechanisms. According to these authors, a smart city must not only ensure the efficient use of digital technologies but also promote the active engagement of the local population, thereby fostering more resilient and socially inclusive communities. In this regard, Meijer and Bolívar (2016) highlight that urban intelligence is closely associated with the capacity for collaborative governance and the presence of public institutions that encourage participatory processes of co-creation of solutions.

Moreover, various studies indicate that urban planning in the context of smart cities must adopt an integrated perspective, aiming to articulate technological aspects with social and institutional issues. Planning must take into account factors such as citizen participation, governmental transparency, and environmental sustainability as essential elements for achieving the Sustainable Development Goals (Albino; Berardi; Dangelico, 2015; Lima et al., 2020; Coe; Paquet; Parr, 2001).

The United Nations (UN, 2015) recognizes smart cities as fundamental instruments for achieving the Sustainable Development Goals, emphasizing that such cities can play a critical role in promoting inclusive economic growth, reducing social inequalities, and mitigating the effects of climate change (UN-Habitat, 2020). SDG 11, in particular, aims to "make cities and human settlements inclusive, safe, resilient, and sustainable," a principle directly associated with the practices and foundations of smart cities.

Thus, the concept of smart cities transcends the use of digital technologies, constituting a holistic and integrated approach involving continuous processes of innovation, learning, and institutional adaptation, as well as a strong emphasis on democratic and participatory practices (Fiálová et al., 2021; Dembski et al., 2020; Hollands, 2008). It is also necessary for cities to have research centers that serve as planning tools for the promotion of quality of life, while also seeking to generate new knowledge about the territories of the cities (Palmisano; Godoy; Ravache, 2023).

In summary, urban planning for smart cities requires a multidimensional understanding, in which technology functions not only as an operational tool but as an articulating element among the various human, social, and institutional dimensions (MacLachlan et al., 2021; Antrobus, 2011).

2.2 The Technological, Human, and Institutional Dimensions in Urban Planning for Smart Cities

The development of smart cities requires a comprehensive and integrated understanding of urban phenomena, acknowledging that the complexity of contemporary cities cannot be grasped from a single perspective. In this regard, it becomes essential to articulate three central and interdependent dimensions: technological, human, and institutional (Nam & Pardo, 2011; Komninos, 2013). Accordingly, smart urban planning must be conceived as a multidimensional and systemic process in which these three spheres operate in constant interaction, guided by the principles of sustainability, social inclusion, resilience, and democratic innovation.

2.2.1 Technological Dimension

The technological dimension emerges as a core component of smart cities, closely linked to the implementation of sophisticated digital infrastructures and the extensive integration of Information and Communication Technologies (ICTs), Artificial Intelligence (AI), the Internet of Things (IoT), digital twins, blockchain, 5G/6G networks, and big data analytics platforms (Javed et al., 2022; Bukhari; Alshibani; Ali, 2024). These technological resources enable the generation, collection, and processing of real-time data, providing advanced urban monitoring capabilities, scenario forecasting, and evidence-based decision-making (Zhou & Suh, 2024).

Moreover, ICTs play a strategic role in optimizing public services, contributing significantly to urban mobility—through intelligent transportation systems—as well as to the management of water and energy resources, environmental monitoring, public safety, and the administration of health and education services (Lim; Cho; Kim, 2021). However, the literature warns of the risks associated with a technocentric bias that overly prioritizes operational efficiency at the expense of social equity and territorial contextualization (Hollands, 2008; Kitchin, 2014). The isolated adoption of technological solutions, lacking a *sui generis* understanding of local social and institutional dynamics, may exacerbate inequalities, intensify digital exclusion, and undermine the legitimacy of smart urban policies.

2.2.2 Human Dimension

The human dimension encompasses the social, cultural, educational, and participatory aspects that confer a people-centered character to smart cities. Central to this dimension is the concept of human and social capital, understood as the collective set of skills, knowledge, trust networks, and community bonds that reinforce cohesion and foster social innovation (Castelnovo; Misuraca; Savoldelli, 2016; Meijer & Rodriguez Bolívar, 2016).

Truly smart cities go beyond the digitalization of public services; they promote participatory co-creation processes by involving citizens at all stages of the urban policy cycle—diagnosis, planning, implementation, and evaluation (Åström, 2020; Dembski et al., 2020). The expansion of deliberative spaces, equitable access to technologies, and the promotion of digital education are fundamental elements for achieving urban justice and social inclusion. Thus, the human dimension requires not only individual empowerment but also the strengthening of organized communities capable of collectively engaging in the design and implementation of sustainable and innovative urban solutions.

2.2.3 Institutional Dimension

The institutional dimension refers to the organizational architecture and regulatory frameworks that structure urban governance processes. It encompasses the capacity of public and private institutions to effectively, transparently, and participatively formulate, coordinate, implement, and monitor urban policies (Fiálová et al., 2021; Antrobus, 2011). To this end, it is necessary to develop multilevel and multisectoral governance models that integrate different spheres of government (local, regional, national) with a wide range of social actors, including businesses, universities, NGOs, and social movements.

The consolidation of smart cities establishes the foundations for democratic governance and the effective participation of society in decision-making processes. By utilizing democratic management as its main instrument—with the active involvement of various social actors and the adoption of collaborative leadership methods—the institutional dimension operates in an articulated manner through disciplined municipal systems, into which information and technology are incorporated (Ravanche; Paula, 2024).

The institutional dimension is also directly related to the adaptive capacity of governments in the face of rapid urban transformations. This entails the creation of flexible structures capable of absorbing innovations, adapting to specific local contexts, and ensuring legal security in the use of new technologies (Jacques et al., 2024; UN-HABITAT, 2020). Additionally, updated and ethical regulatory frameworks are indispensable to guarantee that digital processes respect privacy, data protection, and citizens' fundamental rights, thereby promoting governance driven by public values (Layne & Lee, 2001).

2.3 The Interaction Between Dimensions: An Integrated Conceptual Approach

As highlighted by Nam and Pardo (2011), the effectiveness of smart urban planning lies precisely in the harmonious articulation among the three dimensions. Technology alone does not generate urban intelligence—it must be mediated by competent institutions and engaged citizens. Similarly, a participatory society cannot achieve its goals without the technological and legal means that enable its active engagement.

In this context, it is necessary to construct integrated conceptual models that recognize the dynamic interactions between technology, people, and institutions. This integration not only enhances the effectiveness of urban public policies but also strengthens cities' capacity to respond to emerging challenges such as climate change, health crises, socioeconomic inequalities, and the impacts of digital transition (Albino; Berardi; Dangelico, 2015; MacLachlan et al., 2021).

Smart urban planning requires a systemic approach that transcends sectoral and technocratic views. The construction of smart cities necessarily involves the valorization of the human factor, the strengthening of public institutions, and the responsible use of digital technologies. The future of cities will increasingly depend on the strategic integration of technological innovation, active citizenship, and democratic governance as pillars of an intelligent, sustainable, and inclusive urbanism.

An integrated understanding of the technological, human, and institutional dimensions in the urban planning of smart cities constitutes the foundation for developing strategies that are simultaneously effective, adaptive, and sustainable. This integration aims to overcome the traditionally adopted sectoral and technocentric approaches in urbanism, proposing instead a systemic and relational perspective that acknowledges the complexity, dynamism, and interdependence of contemporary urban phenomena (Nam & Pardo, 2011; Castelnovo; Misuraca; Savoldelli, 2016; Meijer & Rodriguez Bolívar, 2016).

From the perspective of a truly smart city, these three dimensions do not operate in isolation, but rather in constant feedback and functional interdependence. While technology is indispensable for urban monitoring, process automation, and real-time data collection, it only reaches its full potential when guided by human needs, democratic values, and mediated by effective, ethical, and participatory public institutions (MacLachlan et al., 2021; Dembski et al., 2020; Kitchin, 2014).

The human dimension serves as the bridge between technological innovation and the social values that guide public action. It articulates collective demands, local subjectivities, participatory practices, and social capital. By incorporating citizen participation—through hybrid forums, digital public consultations, collaborative apps, and co-creation platforms—urban planning gains social legitimacy and contextual sensitivity, reducing risks of digital exclusion and expanding the reach of public policies (Åström, 2020; Berglund-Snodgrass; Mukhtar-Landgren, 2020; Kumar et al., 2023). This participation goes beyond mere access to information, requiring a new urban social contract based on transparency, public value co-production, and digital literacy. As Sadowski (2020) emphasizes, true urban intelligence lies in the city's ability to foster civic protagonism and adapt to diverse cultural contexts.

The institutional dimension, in turn, is responsible for articulating the enabling conditions of urban innovation. It involves not only adequate and flexible regulatory frameworks but also administrative capacities, collaborative governance arrangements, institutional interoperability, and democratic responsiveness (Fiálová et al., 2021; UN-HABITAT, 2020; Layne & Lee, 2001). In smart urban environments, institutions must act as facilitators of innovation, ensuring that technological processes are implemented ethically, transparently, and with a focus on collective well-being. Data-driven governance—featuring social control systems, performance indicators, and impact metrics—becomes central to legitimizing urban policies and strengthening public trust (Jacques et al., 2024; Meijer & Rodriguez Bolívar, 2016).

The specialized literature proposes various frameworks to represent this multidimensional articulation. Nam and Pardo's (2011) triangular model places the three dimensions—technology, people, and institutions—as vertices of a dynamic system, where urban intelligence emerges from their balanced interaction. More recent models, such as the one discussed by Fiálová et al. (2021), reframe this vision through the concept of smart urban ecosystems, in which data (technology), values (society), and norms (institutions) shape and reinforce the adaptive capacities of the urban system as a whole.

Table 1 – Synthesis of Dimensions and Their Interaction in Smart Urban Planning.

Dimension	Main Focus	Key Elements	Challenges	Guiding Principles
Technological	Implementation of advanced digital infrastructures and intensive use of ICTs for real-time monitoring and decision-making.	AI; IoT; Digital Twins; Blockchain; 5G/6G networks; big data analytics; intelligent transport systems; energy, water, and public service management.	Technocentric bias; digital exclusion; lack of territorial contextualization; risk of deepening social inequalities and weakening legitimacy.	Sustainability; evidence-based efficiency; adaptability; equity in access.
Human	Human and social capital, participatory processes, and co-creation throughout all phases of the urban policy cycle.	Trust networks; digital competencies; hybrid forums; collaborative platforms; digital education; co-creation apps.	Barriers to digital inclusion; unequal participation; cultural resistance; limited citizen agency.	Urban justice; social inclusion; community empowerment; democratic governance.
Institutional	Organizational architecture and regulatory frameworks that structure multilevel and multisectoral urban governance.	Polycentric governance models; collaborative arrangements; institutional interoperability; regulatory frameworks for data privacy and protection.	Excessive bureaucracy; low adaptive capacity; lack of interoperability; legislative gaps; weak transparency.	Transparency; democratic responsiveness; legal certainty; ethics in data usage.

Source: Prepared by the author.

3 INTEGRATED ARTICULATION OF THE DIMENSIONS: A MULTIDIMENSIONAL CONCEPTUAL APPROACH

The consolidation of the smart city concept within contemporary urban planning requires overcoming fragmentary paradigms that analyze technological, social, and institutional components in isolation. A truly intelligent conceptual approach demands the synergistic and multilevel articulation of these dimensions in order to maximize their positive impacts while minimizing the risks of systemic imbalance. The integration of the smart city pillars enhances cities' capacity to respond to the complex challenges of global urbanization, promoting the development of urban environments that are more adaptive, inclusive, resilient, and socially legitimate (Nam & Pardo, 2011; Dembski et al., 2020; Albino; Berardi; Dangelico, 2015).

The interactions among technology, people, and institutions function as interdependent structural components of a smart urban ecosystem. Technology constitutes the operational foundation, enabling the collection, cross-referencing, and analysis of large volumes of data (Big Data), the automation of public services, mobility system management, environmental monitoring, and the development of predictive urban solutions (Fiálová et al., 2021; Caprari et al., 2022). However, its effectiveness is fully realized only when such solutions

are socially appropriated and regulated by competent institutions with adaptive capacity and ethical sensibility.

The human dimension acts as a catalyst for urban intelligence. Citizens are not merely passive recipients of technology; rather, they are co-creators of public policies and agents of transformation in urban spaces. Community engagement—through both in-person and digital participatory and deliberative practices—confers social legitimacy, enhances decision-making effectiveness, and fosters urban solutions that are more contextually aligned with local realities (Åström, 2020; Berglund-Snodgrass; Mukhtar-Landgren, 2020; Meijer & Rodriguez Bolívar, 2016).

The institutional dimension, in turn, represents the structural axis of the triad, facilitating the articulation among urban actors and sectors, ensuring data governance, system interoperability, decision-making transparency, and the ethical regulation of technological use (Castelnovo; Misuraca; Savoldelli, 2016; UN-HABITAT, 2020). Urban governance thus evolves from a centralized model to a networked arrangement, oriented toward polycentric governance, distributed participation, and collaborative innovation.

3.1 Proposal of an Integrated Conceptual Framework

Based on a review of the literature and contemporary empirical evidence, this study proposes an integrated conceptual framework that represents the technological, human, and institutional dimensions as interconnected and dynamic spheres. This model, inspired by the work of Nam and Pardo (2011) and enhanced by recent contributions (Caprari et al., 2022; Dembski et al., 2020), asserts that smart urban planning occurs at the functional and mutually reinforcing intersection of these three dimensions.

In the proposed model:

- Technology functions as an instrumental support, enabling cities to operate efficiently, safely, and responsively;
- People represent the vectors of meaning and transformation of technical solutions, expressing values, experiences, and social demands;
- Institutions form the legal and political foundation, promoting governance structures that enable and regulate urban innovation processes;
- The intersection zone of these dimensions gives rise to the concept of Active Urban Intelligence—a permanent state of institutional learning, regulatory innovation, and systemic adaptation of cities.
- This paradigm is sustainability-oriented, centered on collective well-being, and focused on strengthening the capacity of cities to face crises, manage

Based on the proposed integrated conceptual framework for urban planning in smart cities, it becomes relevant to synthesize the key relationships among the technological, human, and institutional dimensions in order to clarify how these spheres interact dynamically and interdependently. Table 2 presents a systematization of these interactions, grounded in

specialized literature, highlighting the conceptual links, major challenges, and potentialities emerging from the articulation of various components within the smart urban ecosystem.

Table 2 – Synthesis of Conceptual Relationships Among the Technological, Human, and Institutional Dimensions

Conceptual Relationship	Brief Description	Authors
Technological ↔ Human	Technological innovations achieve full effectiveness only when they are socially appropriated and guided by citizens' values and demands, ensuring legitimacy and contextualization.	Åström (2020); Meijer & Rodríguez Bolívar (2016)
Technological ↔ Institutional	The implementation of ICTs requires regulatory frameworks and data governance structures that ensure interoperability, legal certainty, and ethical use of urban technologies.	Castelnovo, Misuraca & Savoldelli (2016); Fialová et al. (2021)
Human ↔ Institutional	Effective citizen participation depends on collaborative and multisectoral institutional arrangements capable of incorporating deliberative practices and co-producing urban policies.	Berglund-Snodgrass & Mukhtar-Landgren (2020); Dembski et al. (2020)
Triadic (Technological–Human–Institutional)	The dynamic intersection of the three dimensions generates "Active Urban Intelligence," characterized by continuous learning, regulatory innovation, and systemic adaptation of cities.	Nam & Pardo (2011); Caprari et al. (2022); Dembski et al. (2020)

Source: Prepared by the author.

The first relationship concerns the technological–human interaction, which emphasizes that the effectiveness of technological innovations is directly dependent on their social appropriation and alignment with citizens' values, needs, and local contexts. This perspective reinforces the idea that technology alone does not produce urban intelligence; rather, it must be mediated by participatory and inclusive practices that ensure legitimacy and practical relevance for the solutions developed. Similarly, the technological–institutional relationship reveals that the implementation of ICTs and other digital innovations requires robust regulatory frameworks, effective data governance, and institutional structures capable of ensuring interoperability, ethical use, and legal certainty within the urban context.

The human–institutional articulation, in turn, highlights that active citizenship can only be realized through open, collaborative, and multisectoral institutional arrangements that promote permanent channels for deliberation, public engagement, and co-production of policies. Lastly, the triadic relationship among the three dimensions—technological, human, and institutional—gives rise to the concept of Active Urban Intelligence, understood as an advanced state of urban maturity characterized by continuous institutional learning, regulatory innovation, and adaptive capacity in response to social, economic, and environmental transformations. This view reinforces the necessity of integrated and systemic approaches in contemporary urban planning.

4 CONCEPTUAL IMPLICATIONS AND CHALLENGES OF INTEGRATED URBAN PLANNING FOR SMART CITIES

The implementation of a smart urban planning model based on the integration of technology, active citizenship, and institutional governance offers significant opportunities to positively transform the urban environment. However, this process also faces structural, conceptual, methodological, and practical challenges. These challenges primarily stem from the

need to align technological innovation with social justice, environmental sustainability, and institutional legitimacy in urban contexts often marked by historical inequalities and fragmented governance structures.

Although the concept of smart cities is promising, the literature highlights several limitations that still compromise its effectiveness. The main critique lies in the tendency toward technocentrism—that is, an excessive focus on the technological dimension at the expense of the human and institutional dimensions. Such imbalance may lead to decontextualized solutions, disconnected from the socioeconomic and cultural realities of urban territories (Fiálová et al., 2021; Javed et al., 2022).

Another critical issue is the lack of articulation between urban policies and digital innovation, which results in fragmented, short-term, and weakly institutionalized initiatives. As a result, smart city projects often fail to promote social inclusion, generate sustainable public value, or adapt to local contexts (Åström, 2020; Hollands, 2008).

Conversely, approaches that harmoniously integrate technological, social, and institutional dimensions show high transformative potential. Solutions such as participatory digital twins, collaborative governance platforms, and integrated geospatial data analytics—when aligned with inclusive strategies and robust institutional frameworks—have proven effective in building more resilient, responsive, and people-centered cities (Caprari et al., 2022; Dembski et al., 2020).

4.1 Ethical, Social, and Economic Aspects of Urban Technologies

The increasing digitalization of urban processes demands a deep reflection on contemporary ethical dilemmas, particularly regarding the collection, use, and sharing of urban data. Issues such as digital privacy, algorithmic surveillance, decision-making transparency, and cyber-responsibility challenge democratic principles and public trust in technological solutions (Castelnovo; Misuraca; Savoldelli, 2016; Kitchin, 2014). The absence of clear regulations can increase the risk of misuse of sensitive data, algorithmic discrimination, and the restriction of individual freedoms (Lim; Cho; Kim, 2021).

From a social perspective, the so-called digital divide constitutes a structural barrier to the realization of truly smart cities. Unequal access to technology, connectivity infrastructure, and digital literacy can intensify existing inequalities, marginalizing vulnerable populations—such as the elderly, residents of peripheral areas, and racialized groups—from the process of urban transformation (Dembski et al., 2020; Fiálová et al., 2021). Addressing this challenge requires public policies that promote digital education, equitable infrastructure, and technological inclusion, with active participation from civil society in defining priorities (Silva et al., 2024).

Smart cities cannot be exclusionary, as this risks reproducing historical inequalities in which environmental and technological benefits are directed only to privileged areas. For a smart city to be truly sustainable, it is essential to link technological innovation with social inclusion, ensuring universal access to urban advancements. This requires public policies guided by social justice, effective participation of all social groups, and an equitable distribution of

resources, thus preventing urban modernization from becoming an instrument of gentrification and the deepening of socio-spatial disparities (Godoy et al., 2024).

From an economic standpoint, urban technologies demand substantial long-term investments in both infrastructure and institutional capacity-building. This requires innovative and sustainable financing models, such as public-private partnerships (PPPs), multisectoral funds, and mechanisms for digital accountability. Furthermore, adopting public value frameworks enables the evaluation not only of costs but also of the social and environmental impacts generated by the implemented technologies (Javed et al., 2022; Castelnovo et al., 2016).

4.2 Institutional and Social Challenges for the Implementation of the Smart City Concept

The institutional sphere is one of the most critical and, at the same time, least developed in smart city initiatives. Most public administrations still operate under hierarchical bureaucratic logics, with limited capacity for organizational innovation and low permeability to participatory processes (Berglund-Snodgrass; Mukhtar-Landgren, 2020; Nam; Pardo, 2011).

Building smart urban governance requires deep institutional restructuring, with an emphasis on forming multidisciplinary teams, developing digital competencies, ensuring system interoperability, and promoting coordination across sectors and levels of government. Adaptive governance—data-driven but grounded in public values—emerges as a viable and necessary alternative to address contemporary urban challenges (Meijer; Rodriguez Bolívar, 2016).

Additionally, social and cultural inclusion constitutes a cross-cutting challenge. Local communities often resist the adoption of technologies when they do not feel part of the decision-making process. Overcoming this resistance requires approaches based on public deliberation, participatory design, and collaborative planning from the earliest stages of project development. Genuine public involvement strengthens the sense of belonging, legitimizes decisions, and increases the sustainability of adopted policies (Åström, 2020; Dembski et al., 2020).

In summary, the success of integrated and intelligent urban planning depends not only on technical innovations but on the balanced integration of institutional capacities, social justice, and technological ethics. Smart and sustainable cities are those capable of learning from their territories, adapting to their citizens, and innovating with collective responsibility. Building a more just, democratic, and resilient urban future thus requires recognizing urban intelligence as a common good, co-produced by people, institutions, and technologies in continuous interaction.

Table 3 – Synthesis of Conceptual Limitations and Challenges Across the Technological, Human, and Institutional Dimensions

Limitation	Relational Dynamics	Authors
Technocentrism ↔ Digital Exclusion ↔ Social Legitimacy	The technocentric bias concentrates investments in digital infrastructure while neglecting diverse social contexts, deepening the digital divide among vulnerable groups and undermining public trust and the legitimacy of urban policies.	Fiálová et al. (2021); Javed et al. (2022); Dembski et al. (2020)
Ethical Dilemmas ↔ Institutional Fragility ↔ Cyber Accountability	The expansion of data collection and algorithmic decision-making raises challenges related to privacy and surveillance, which can only be mitigated by adaptive regulatory frameworks; lack of normative capacity and legal accountability weakens citizens' rights protection.	Castelnovo; Misuraca & Savoldelli (2016); Kitchin (2014); UN-Habitat (2020)
Sustainable Financing ↔ Digital Accountability ↔ Public Co-production	Public-private partnerships (PPPs) and multisectoral funding models, combined with public value frameworks and performance indicators, promote transparency in resource allocation and citizen engagement in priority-setting, strengthening equity and community resilience.	Javed et al. (2022); Lim; Cho & Kim (2021); Caprari et al. (2022)
Institutional Restructuring ↔ Participatory Design ↔ Active Urban Intelligence	The shift from bureaucratic structures to polycentric governance, with multidisciplinary teams and system interoperability, incorporates participatory methodologies from the outset, generating institutional learning cycles and continuous regulatory innovation (Active Urban Intelligence).	Nam & Pardo (2011); Meijer & Rodríguez Bolívar (2016); Åström (2020)
Systemic Interdependence for Overcoming Challenges	The reciprocal articulation of technological, human, and institutional axes creates synergies that enhance joint progress, enabling integrated responses to technical, social, and ethical dilemmas in the pursuit of sustainable and legitimate smart cities.	Nam & Pardo (2011); Dembski et al. (2020); Albino; Berardi & Dangelico (2015)

Source: Compiled by the author.

The relational analysis of conceptual implications and challenges reveals networks of mutual influence among the three dimensions—technological, human, and institutional—and the various obstacles identified in the literature:

Technocentrism ↔ Digital Exclusion ↔ Social Legitimacy - The technocentric bias, by prioritizing operational efficiency, tends to fragment urban policies and concentrate investments in digital infrastructures without considering the heterogeneity of social contexts. This approach exacerbates the digital exclusion of vulnerable groups (e.g., the elderly, peripheral communities, racialized populations), undermining citizen trust and participation. Thus, the absence of technology inclusion policies not only intensifies inequalities but also weakens the legitimacy of urban solutions and damages social cohesion (Fiálová et al., 2021; Javed et al., 2022; Dembski et al., 2020).

Ethical Dilemmas ↔ Institutional Fragility ↔ Cyber Accountability - Mass data collection and the adoption of decision-making algorithms introduce ethical challenges—such as privacy, surveillance, and algorithmic discrimination—that can only be mitigated by robust regulatory frameworks. However, many administrations lack normative flexibility and adaptive capacities, resulting in legal gaps that leave citizens unprotected and open the door to technological abuses of power. This institutional fragility compromises transparency and accountability, thereby undermining public trust (Castelnovo; Misuraca; Savoldelli, 2016; Kitchin, 2014; UN-Habitat, 2020).

Sustainable Financing ↔ Digital Accountability ↔ Public Co-production - Innovative financial models (such as public-private partnerships and multisectoral funds) and public value

frameworks enable the evaluation of socio-environmental impacts and the alignment of technological investments with urban justice goals. The adoption of digital accountability mechanisms—such as performance indicators and citizen audits—strengthens policy co-production and ensures that resources are allocated equitably. This relationship between financing and participatory governance enhances community resilience and legitimizes technological decision-making (Javed et al., 2022; Lim; Cho; Kim, 2021; Caprari et al., 2022).

Institutional Restructuring ↔ Participatory Design ↔ Active Urban Intelligence - The transition from bureaucratic, hierarchical structures to polycentric and multisectoral governance models requires multidisciplinary teams, digital competencies, and system interoperability. Integrating participatory design methodologies from the early stages (e.g., hybrid public consultations, urban labs) strengthens citizen agency and feeds into technological development, creating a continuous cycle of institutional learning. This dynamic lies at the heart of Active Urban Intelligence, where regulatory innovation and systemic adaptation converge to generate contextualized and inclusive solutions (Nam & Pardo, 2011; Meijer & Rodríguez Bolívar, 2016; Åström, 2020).

Systemic Interdependence for Overcoming Challenges - None of the identified challenges—whether technological, ethical, economic, or institutional—can be addressed in isolation. Relational integration among the three axes allows advancements in one dimension to generate progress in the others, creating synergies that overcome fragmented paradigms. Only through a relational and systemic approach is it possible to build smart cities that sustainably and legitimately combine technological innovation, social justice, and democratic governance.

5 FUTURE DIRECTIONS FOR RESEARCH AND IMPLEMENTATION

In light of the conceptual analyses, structural challenges, and transformation opportunities discussed throughout this study, it becomes evident that future efforts must focus on advancing the theoretical, methodological, and practical maturity of the smart cities field. These efforts should prioritize a critical, intersectional, and transdisciplinary approach capable of aligning technological innovation, social justice, and democratic governance in addressing the complex dynamics of contemporary urban environments.

The expansion of conceptual and methodological knowledge is the first essential axis for advancing the field. The development of smart cities requires the continuous refinement of the epistemological foundations underpinning their planning and management. Despite the widespread use of the term, the concept still lacks solid theoretical boundaries and integrated methodologies that address the multiple dimensions of the digital urban environment (Nam & Pardo, 2011; Zygiaris, 2013). In this regard, it is recommended to intensify studies that bridge urban planning, data science, urban sociology, computational ethics, digital economy, and public administration. It is also essential to investigate the impacts of emerging technologies—such as artificial intelligence for urban management, machine learning for mobility forecasting, metaverses applied to territorial planning, and blockchain as a tool for transparency and decentralization (Javed et al., 2022; Lim; Cho; Kim, 2021). Furthermore, it is urgent to expand studies on the ethical, normative, and social implications of algorithmic decisions, particularly

concerning equitable access, digital rights, and the accountability of automated urban systems (Kitchin, 2014; Sanders & Shearmur, 2020).

In the realm of the promotion of participatory and inclusive practices, citizen participation in smart cities must be understood as a political and deliberative process—not merely as a technical feature of digital platforms. The challenge lies in transforming technology into a medium for plural democratic expression and the co-production of public value (Åström, 2020; Berglund-Snodgrass & Mukhtar-Langren, 2020). Future research should explore active methodologies for social engagement, such as digital participatory budgeting, immersive simulations using augmented reality, serious games for participatory planning, and multichannel public consultations. It is equally important to develop and validate urban digital justice indicators capable of measuring levels of access, technological literacy, and the representativeness of marginalized groups within intelligent governance structures. Digital inclusion should be addressed as a fundamental urban right, integrated with policies promoting territorial equity, universal internet access, public technological education, and diversity in urban decision-making processes.

The improvement of institutional capacity and adaptive governance constitutes a strategic pillar for the consolidation of smart cities. Public institutions must be rethought in light of networked, responsive, and distributed governance models that integrate multiple stakeholders and decision-making scales. These institutions must operate with agility in the face of technological transformations while maintaining an ethical commitment to urban rights and collective well-being (Castelnovo; Misuraca & Savoldelli, 2016; MacLachlan et al., 2021). Furthermore, open data adoption, institutional interoperability, and trust-based public architectures are strategic themes to ensure legitimacy, efficiency, and transparency in the implementation of digital technologies.

Lastly, the continuous monitoring and evaluation of smart urban policies must be seen as a fundamental condition for their effectiveness. This requires the development of robust monitoring and evaluation methodologies based on real-time data, socio-environmental metrics, impact indicators, and participatory feedback mechanisms (Dembski et al., 2020; Lim; Cho; Kim, 2021). In this context, the strengthening of urban public innovation labs as experimental spaces for policy evaluation is highly recommended, alongside the creation of integrated urban dashboards with accessible visualizations and citizen-friendly language. Explainable Artificial Intelligence (XAI) may contribute to interpreting large data volumes transparently, democratizing information and enabling more informed and collaborative decision-making processes. These practices reinforce institutional learning capacities, allowing for strategic adjustments based on evidence, and promote a culture of urban planning grounded in results, social legitimacy, and spatial justice.

The construction of truly smart cities will not be achieved through the mere application of advanced digital solutions, but through the capacity of urban societies to integrate technical innovation with social inclusion, institutional capacity, and democratic values. The future directions outlined here offer pathways for consolidating the field as a critical arena for territorial justice, ethical innovation, and the co-production of more sustainable urban futures. Advancing in this direction means reimagining smart cities as collaborative future-oriented projects, anchored in plurality, complexity, and the co-evolution of people, technologies, and

institutions. This is, therefore, a research and public action agenda deeply rooted in humanism—one that positions the city as a space for democratic reinvention and the reconstruction of the relationship between the urban and the common.

6 FINAL CONSIDERATIONS

The relational analysis of the implications and challenges of integrated urban planning for smart cities revealed that the technological, human, and institutional vectors do not operate in isolation but rather in constant interdependence, mutually influencing the effectiveness, legitimacy, and equity of urban transformations. This article demonstrated that the predominance of a technocentric logic—focused on maximizing operational efficiency and the digitalization of infrastructures—tends to produce exclusionary effects, especially among more vulnerable social groups. This results in deficits of democratic legitimacy, weakens community bonds, and undermines citizen engagement with public policies (Fiálová et al., 2021; Javed et al., 2022; Dembski et al., 2020).

Conversely, approaches that combine emerging technologies—such as participatory digital twins, immersive visualization systems, and open civic platforms—with programs for digital inclusion, participatory education, and socially sensitive design have demonstrated greater urban resilience and the ability to promote territorial justice. This integration enables technology to move beyond being a mere management tool, becoming instead an instrument for collective empowerment.

From an ethical and regulatory perspective, the increasing use of algorithmic systems and large-scale data collection devices presents increasingly complex dilemmas, particularly concerning privacy, algorithmic surveillance, and the reproduction of digital inequalities. Overcoming these risks requires the formulation of adaptive regulatory frameworks grounded in principles of informational justice, as well as the establishment of public institutions capable of exercising cyber accountability and ensuring algorithmic transparency (Castelnovo; Misuraca; Savoldelli, 2016; Kitchin, 2014).

In the economic domain, the importance of sustainable and inclusive financing models is reinforced—such as public-private partnerships with social oversight, multisectoral funds, and frameworks oriented toward public value. These models must integrate efficiency, accountability, and legitimacy. Furthermore, they should be accompanied by socio-environmental impact indicators and mechanisms for citizen deliberation, promoting the continuous and responsible co-production of urban policies (Lim; Cho; Kim, 2021; Caprari et al., 2022).

Finally, it was emphasized that institutional restructuring—essential to smart urban governance—will only be effective if accompanied by qualified participatory practices from the diagnostic phase through to implementation. The formation of multidisciplinary teams, systemic interoperability, and the incorporation of collaborative design methodologies contribute to the consolidation of what this article terms Active Urban Intelligence—a dynamic state of organizational learning, regulatory innovation, and the contextualized production of urban solutions (Nam & Pardo, 2011; Meijer; Rodríguez Bolívar, 2016; Åström, 2020).

In summary, overcoming the conceptual, operational, and regulatory barriers of smart cities requires the recognition that technology, citizenship, and institutional capacity are co-constitutive dimensions of contemporary urban transformation. The construction of truly smart cities—those that are sustainable, inclusive, and adaptive—therefore depends on the consolidation of integrated, relationally-oriented strategies that interweave technical innovation, social justice, and democratic governance as inseparable pillars of a new urban paradigm.

REFERENCES

ALBINO, V.; BERARDI, U.; DANGELICO, R. M. Smart cities: definitions, dimensions, performance, and initiatives. *Journal of Urban Technology*, v. 22, n. 1, p. 3–21, 2015. Available at: https://www.academia.edu/22605006/Smart_Cities_Definitions_Dimensions_Performance_and_Initiatives. Accessed on: February 24, 2025.

ANTROBUS, D. Smart green cities: from modernization to resilience? *Urban Research & Practice*, v. 4, n. 2, p. 207–214, 2011. Available at: <https://www.ingentaconnect.com/content/routledg/rurp20/2011/00000004/00000002/art00006>. Accessed on: February 24, 2025.

ÅSTRÖM, J. Participatory urban planning: what would make planners trust the citizens? *Urban Planning*, v. 5, n. 2, p. 84–93, 2020. DOI: [10.17645/up.v5i2.3021](https://doi.org/10.17645/up.v5i2.3021).

BATISTA, M. E.; REZENDE, D. Cidades inteligentes e governança municipal: uma análise crítica. *Revista Gestão Pública Municipal*, v. 25, n. 3, p. 48–63, 2019.

BENINI, S. M.; SILVA, A. L. C.; GODOY, J. A. R.; PALMISANO, A.. Smart Cities for Urban Planning: A Bibliometric-Conceptual Analysis. *International Journal of Business and Management*, v. 19, n.6, 2024. DOI: [10.5539/ijbm.v19n6p92](https://doi.org/10.5539/ijbm.v19n6p92)

BERGLUND-SNODGRASS, L.; MUKHTAR-LANDGREN, D. Conceptualizing testbed planning: urban planning in the intersection between experimental and public sector logics. *Urban Planning*, v. 5, n. 1, p. 96–106, 2020. DOI: [10.17645/up.v5i1.2528](https://doi.org/10.17645/up.v5i1.2528).

BUKHARI, A.; ALSHIBANI, S. M.; ALI, M. A. Smart city as an ecosystem to foster entrepreneurship and well-being: current state and future directions. *Sustainability*, v. 16, n. 24, 11209, 2024. DOI: [10.3390/su162411209](https://doi.org/10.3390/su162411209).MDPI

CAPRARO, G.; CASTELLI, G.; MONTUORI, M.; CAMARDELLI, M.; MALVEZZI, R. Digital twin for urban planning in the Green Deal era: a state of the art and future perspectives. *Sustainability*, v. 14, n. 10, 6263, 2022. DOI: [10.3390/su14106263](https://doi.org/10.3390/su14106263).

CASTELNOVO, W.; MISURACA, G.; SAVOLDELLI, A. Smart cities governance: the need for a holistic approach to assessing urban participatory policy making. *Social Science Computer Review*, v. 34, n. 6, p. 724–739, 2016. Available at: https://www.researchgate.net/publication/284859012_Smart_Cities_Governance_The_Need_for_a_Holistic_Approach_to_Assessing_Urban_Participatory_Policy_Making. Accessed on: February 24, 2025.

COE, A.; PAQUE, J.; PARR, S. Smart growth: building an intermodal transportation system. *Government Finance Review*, v. 17, n. 2, p. 28–34, 2001.

DEMBSKI, F.; WÖSSNER, U.; LETZGUS, M.; RUDDAT, M.; YAMU, C. Urban digital twins for smart cities and citizens: the case study of Herrenberg, Germany. *Sustainability*, v. 12, n. 6, 2307, 2020. DOI: [10.3390/su12062307](https://doi.org/10.3390/su12062307).

FIÁLOVÁ, J.; BAMWESIGYE, D.; ŁUKASZKIEWICZ, J.; FORTUNA-ANTOSZKIEWICZ, B. Smart cities landscape and urban planning for sustainability in Brno city. *Land*, v. 10, n. 8, 870, 2021. DOI: [10.3390/land10080870](https://doi.org/10.3390/land10080870).

GODOY, J. A. R. , BENINI, S. M., SILVA, A. L. C. ,PALMISANO, A. Green Cities, Gray Realities: The Rhetoric of Sustainability and Urban Segregation. *Revista De Gestão Social E Ambiental*, v.18, n12, 2024. DOI: [10.24857/rgsa.v18n12-157](https://doi.org/10.24857/rgsa.v18n12-157).

HARRISON, C.; ECKMAN, B.; HAMILTON, R.; HARTSWICK, P.; KALAGNANAM, J.; PARASZCZAK, G.; WILLIAMS, P. Foundations for smarter cities. *IBM Journal of Research and Development*, v. 54, n. 4, p. 1–16, 2010. DOI: [10.1147/JRD.2010.2048257](https://doi.org/10.1147/JRD.2010.2048257).

HOLLANDS, R. G. Will the real smart city please stand up? *City*, v. 12, n. 3, p. 303–320, 2008. Disponível em: [\[https://labos.ulg.ac.be/smart-city/wp-content/uploads/sites/12/2017/03/Lecture-MODULE-3-2008-Will-the-real-smart-city-please-stand-up-Hollands.pdf\]](https://labos.ulg.ac.be/smart-city/wp-content/uploads/sites/12/2017/03/Lecture-MODULE-3-2008-Will-the-real-smart-city-please-stand-up-Hollands.pdf). Accessed on: February 24, 2025.

JACQUES, E. A.; JÚNIOR, A. N.; DE PARIS, S.; FRANCESCATTO, M. B.; NUNES, R. F. B. Smart city actions integrated into urban planning: management of urban environments by thematic areas. *Applied Sciences*, v. 14, n. 8, p. 3351, 2024. DOI: [10.3390/app14083351](https://doi.org/10.3390/app14083351).

JAVED, A. R.; SHAHZAD, F.; REHMAN, S.; ZIKRIA, Y. B.; RAZZAK, I.; JALIL, Z.; XU, G. Future smart cities: requirements, emerging technologies, applications, challenges, and future aspects. *Cities*, v. 129, 103794, 2022. DOI: [10.1016/j.cities.2022.103794](https://doi.org/10.1016/j.cities.2022.103794).

KOMNINOS, N. *Intelligent cities: innovation, knowledge systems and digital spaces*. London: Routledge, 2002. Available at: <https://www.taylorfrancis.com/books/mono/10.4324/9780203857748/intelligent-cities-nicos-komninos>. Accessed on: February 24, 2025.

LAYNE, K.; LEE, J. Developing fully functional e-government: a four stage model. *Government Information Quarterly*, v. 18, n. 2, p. 122–136, 2001. DOI: [10.1016/S0740-624X\(01\)00066-1](https://doi.org/10.1016/S0740-624X(01)00066-1).

LIMA, E. G.; CHINELLI, C. K.; GUEDES, A. L. A.; VAZQUEZ, E. G.; HAMMAD, A. W. A.; HADDAD, A. N.; SOARES, C. A. P. Smart and sustainable cities: the main guidelines of City Statute for increasing the intelligence of Brazilian cities. *Sustainability*, v. 12, n. 3, 1025, 2020. DOI: [10.3390/su12031025](https://doi.org/10.3390/su12031025).

LIM, C.; CHO, G.-H.; KIM, J. Understanding the linkages of smart-city technologies and applications: key lessons from a text mining approach and a call for future research. *Technological Forecasting and Social Change*, v. 170, 120893, 2021. DOI: [10.1016/j.techfore.2021.120893](https://doi.org/10.1016/j.techfore.2021.120893).

MACLACHLAN, A.; BIGGS, E.; ROBERTS, G.; BORUFF, B. Sustainable city planning: a data-driven approach for mitigating urban heat. *Frontiers in Built Environment*, v. 6, 519599, 2021. DOI: [10.3389/fbuil.2020.519599](https://doi.org/10.3389/fbuil.2020.519599).

MEIJER, A.; RODRIGUEZ BOLÍVAR, M. Smart city governance: a comparative study. *Information Polity*, v. 21, n. 1, p. 1–17, 2016. DOI: [10.3233/IP-150371](https://doi.org/10.3233/IP-150371).

MORA, L.; BOLICI, R.; DEAKIN, M. Smart city development: ICT innovation for urban sustainability. In: STRATIGEA, A.; KONSTANTINIDIS, K. (org.). *Smart cities in the Mediterranean*. Cham: Springer, 2017. . DOI: [10.1007/978-3-319-75774-2_28](https://doi.org/10.1007/978-3-319-75774-2_28).

NAM, T.; PARDO, T. A. Conceptualizing smart city with dimensions of technology, people, and institutions. In: *Proceedings of the 12th Annual International Conference on Digital Government Research*, 2011, Maryland. Anais [...]. p. 282–291. Available at: https://www.researchgate.net/publication/221585167_Conceptualizing_Smart_City_with_Dimensions_of_Technology_People_and_Institutions. Accessed on: February 24, 2025.

ONU. *Transformando nosso mundo: a Agenda 2030 para o desenvolvimento sustentável*. Nova Iorque: Organização das Nações Unidas, 2015. Disponível em: <https://brasil.un.org/pt-br/91863-agenda-2030-para-o-desenvolvimento-sustent%C3%A1vel>. Accessed on: February 24, 2025.

ONU-HABITAT. *World Cities Report 2020: the value of sustainable urbanization*. Nairobi: UN-Habitat, 2020. Available at: https://unhabitat.org/sites/default/files/2020/10/wcr_2020_report.pdf. Accessed on: February 24, 2025.

PALMISANO, A.; GODOY, J. A. R.; RAVACHE, R. L. Observatório de cidades inteligentes e sustentáveis: um estudo de implantação para a Região Metropolitana do Vale do Rio Cuiabá-MT. *Periódico Eletrônico Fórum Ambiental da Alta Paulista*, v. 19, n. 4, 2023. DOI: [10.17271/1980082719420234369](https://doi.org/10.17271/1980082719420234369).

RAVACHE, R. L.; PAULA, D. C. J. Barra do Gráças-MT, perspectivas a partir do Ranking Connected Smart Cities. *Periódico Eletrônico Fórum Ambiental da Alta Paulista*, [S. I.], v. 20, n. 5, 2024. DOI: [10.17271/1980082720520245264](https://doi.org/10.17271/1980082720520245264).

SILVA, A. L. C.; BENINI, S.M.; GODOY, J. A. R. Smart Cities and Sustainable Cities: contradictions and synergy for construction of an integrated model. *Boletim de Conjuntura (BOCA)*, v. 20, n. 58, p. 350–382, 2024. DOI: <https://doi.org/10.5281/zenodo.14533176>.

ZHOU, L.; SUH, W. A bibliometric analysis of research on the metaverse for smart cities: the dimensions of technology, people, and institutions. *Systems*, v. 12, n.10, 2024. DOI: <https://doi.org/10.3390/systems12100412>.

Periódico Eletrônico Fórum Ambiental da Alta Paulista

Electronic Journal Environmental Forum of Alta Paulista

ISSN 2966-2931 Suporte Online / Online Support - ISSN 1980-0827 Suporte CD-ROM / CD-ROM Support

Edição em Português e Inglês / *Edition in Portuguese and English* - v. 21, n. 1, 2025
