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ABSTRACT  

This paper aims to demonstrate the feasibility and relevance of applying structural optimization methods together 

with the probability of failure constraints, integrating the search for the optimum solution and the guarantee of 

structural safety. The methodology involved optimization methods such as sequential quadratic (SQP), interior-point, 

and active-set, along with the FORM probability of failure calculation method. Computational tools such as MATLAB 

enabled a comparative analysis of the performance of these methods. The study stands out for integrating structural 

optimization and reliability, applying it to reinforced concrete beams, a relevant topic for structural engineering. The 

results of the analysis of simply supported beams showed satisfactory convergence between the methods, with 

minimal variability and superior performance of the SQP and interior-point optimizers. The introduction of 

standardized safety coefficients increased the reinforcement rate, reducing the probability of failure and costs. The 

study highlighted the synergy between optimization and structural safety, contributing theoretically by showing the 

effectiveness of combining optimization with probability of failure restrictions, and methodologically by 

comparatively evaluating different optimization methods. 
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1 INTRODUCTION 

 

When carrying out a project, structural engineers must always seek results that meet 

both the economy and safety of the structure. Optimization methods are very relevant in the 

search for economy, as they minimize the cost function (objective function) subject to 

restrictions that are prescribed in design standards. The literature and programming language 

libraries, such as MATLAB (which will be used in this work), are well-established in the 

application of these methods to structures, facilitating their use and analysis. 

Reliability methods are very useful when seeking safety, since the quantities involved 

have measurement uncertainties, leading to statistical modeling that shows potential variability, 

uncertainties that arise mainly in concrete production and project execution. The Brazilian 

standard itself recognizes these uncertainties, so much so that it establishes safety coefficients 

that must be applied in the calculations to ensure greater safety in the process. 

Motta and Afonso (2016) analyze the application of optimization methods linked to 

reliability analysis in spatial truss analysis, with robust geometry in their modeling and 

satisfactory results. Motta et al (2021) also applied reliability analysis methods to the analysis of 

corroded pipelines, which are issues involving significant uncertainties and non-linearities in the 

process. Optimization methods are also widely used in fluid mechanics, as Horowitz (2013) 

showed for the analysis of the operation of oil reservoirs. 

This study aims to optimize the cost of a simply supported beam subjected to bending 

stresses, with the probability of failure (obtained by reliability methods) as one of the constraints 

of this process. In short, the aim is to reduce costs with safety as one of the constraints. As a 

result, a comparison can be drawn between the methods applied and discussions can be held 

based on these results. In the case of reinforced concrete structures, the calculation models, 

procedures, and restrictions are established according to the ABNT NBR 6118:2023 standard, 

thus being the basis for this work. 
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2 METHODOLOGY 

 
The problem to be solved is cost optimization (concrete, formwork, steel) of a simply 

supported beam, with a constant load (q) distributed along its span (L). As shown in Figure 1, 

the design variables are the dimensions of the cross-section: width (x1), height (x2, and steel 

area (x3). 

Based on the National System for Research on Costs and Indices of Civil Construction 

(SINAPI), we could build the cost function to be optimized, therefore called the objective 

function. Table 1 shows the compositions used and their measurement units, taking the cost 

values for the state of Pernambuco for March 2024. It is therefore easy to obtain the objective 

function, as shown in Equation 1, where ρ is the specific weight of the steel. 

 
Figure 1 – Simply supported beam  

Source: Elaborated by the authors, 2023. 

 

Based on the National System for Research on Costs and Indices of Civil Construction 

(SINAPI), we could build the cost function to be optimized, therefore called the objective 

function. Table 1 shows the compositions used and their units of measurement, taking the cost 

values for the state of Pernambuco in March 2024. Thus, the objective function can be obtained 

easily, as shown in Equation 1, where ρ is the specific weight of the steel. 

 

           Table 1 – Unit costs  
Code Description  Unit Cost (R$) 

96557 Concreting  M3 654.30 

96530 Form assembly  M2 156.96 

104920 Reinforcement  KG 11.91 
Source: SINAPI, 2024. 

 

𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 ∗ 𝑥1𝑥2𝐿 + 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟𝑚 ∗ (𝑥1𝐿 + 2𝑥2𝐿) + 𝑐𝑜𝑠𝑡 𝑏𝑒𝑎𝑚 ∗ 𝑥3𝐿𝜌 

 

This problem deals with bending and the maximum deflection of the beam. Bending 

occurs when two equal and opposite bending moments act in the same longitudinal plane (BEER 

et al, 2015), resulting in the formation of two regions of stress in the cross-section: tension and 

normal compression. Concrete has high compressive strength, but its fragility and low tensile 

strength restrict its use in isolation. To overcome these limitations, steel is used jointly with 

concrete, conveniently positioned in the part to resist tensile stresses (BASTOS, 2019). 

q 

L 

Eq. 1 
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The maximum deflection is the main deformation that occurs on the elastic line, which 

is the bending diagram of the longitudinal axis that passes through the centroid of each area of 

the beam’s cross-section (HIBBELER, 2010). Therefore, the concepts of bending and flection are 

interlinked and present important normative constraints to be dealt with. 

By considering bending stresses, the optimization process requires balancing the 

resistive moment, where fyk is the characteristic yield strength of the steel, fck of the concrete, 

and c the cover of the cross-section (Equation 2), against the requesting moment (Equation 3), 

where the resistive moment represents the capacity of the cross-section to withstand bending, 

while the requesting moment is the stress present in the structure under analysis. It is worth 

noting that such a balance is achieved considering the safety coefficients established in the 

standard in item 12.4.1; however, the equations presented consider this balance based on the 

variables of the problem. 

 𝑀𝑅 = 𝑓𝑦𝑘𝑥3 (𝑥2 − 𝑐 −
0.588𝑓𝑦𝑘𝐴𝑠

𝑥1𝑓𝑐𝑘
) 

 

𝑀𝑆 =
𝑞𝐿2

8
 

 

The reinforcement required to withstand the tensile forces is obtained from the 

balance between these moments. ABNT NBR 6118:2023, in its items 17.3.5.2.1 and 17.3.5.2.4, 

establishes, respectively, restrictions for the minimum reinforcement (Equation 4), in which up 

to a fck of 30 Mpa, the ρ_min factor is 0.15%, and the maximum (Equation 5), to be added to 

the section and therefore considered in the optimization process. 
 𝐴𝑚𝑖𝑛 = 𝜌𝑚𝑖𝑛𝑥1𝑥2 

 
 𝐴𝑚𝑎𝑥 = 0.04𝑥1𝑥2 

 
The bending moment and reinforcement rate restrictions above are clearly non-linear, 

as they depend on the optimization process variables themselves. In addition, linear restrictions 

were also considered, such as the beam width restriction in item 13.2.2 of the standard, as well 

as height restrictions (minimum 30 cm) and reinforcement rate (minimum 1 cm²), the latter two 

being adopted due to practical construction issues, and therefore not required by the standard.  

Finishing off the restrictions, we have the bending equation for the conditions of the 

problem addressed (Equation 6), where E is the modulus of elasticity, derived from solving the 

differential equation of the elastic line (BEER et al, 2015). Item 13.3 of NBR 6118:2023 limits the 

deformation to L/500 and 10 mm for the case of beams supporting walls, in addition to the 

rotation limit of 0.0017 rad, where such rotation occurs in simple supports, which is the case 

addressed. This rotation is also calculated from the elastic line (Equation 7), the first derivative 

of the elastic line equation being. 

𝑦 (
𝐿

2
) =

5

32

𝑞𝐿4

𝐸𝑥1𝑥2
3 

 
ⅆ𝑦

ⅆ𝑥
(0, 𝐿) =

1

2

𝑞𝐿3

𝐸𝑥1𝑥2
3 

 

Eq. 2 

Eq. 3 

Eq. 4 

Eq. 5 

Eq. 6 

Eq. 7 
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The MATLAB language is an option for solving optimization problems, as it includes the 

Optimization Toolbox library with functions for finding parameters that minimize or maximize 

objective functions while satisfying constraints (Mathworks, 2024). To deal with non-linear 

problems, the library provides the fmincon function, which finds the minimum of problems with 

non-linear constraints with different variables (Mathworks, 2024), therefore solving the 

problem concerned. 

The fmincon function allows the user to choose the algorithm that will be used to solve 

the problem, so it is worth comparing them. To this end, we chose the “interior-point” (function 

default), “sqp,” and active-set algorithms, which are well-known methods in the optimization 

literature, and plotted the iterations of the methods, enabling us to draw reliable conclusions.  

The variables presented in the equations previously described show variability due to 

uncertainties in the process of obtaining them. These uncertainties can be related  to 

measurement errors, natural phenomena, and manufacturing errors, among others (BECK, 

2008). Therefore, for a higher level of certainty in the results, it is important to consider these 

variabilities, using a study based on the concepts established by structural reliability. 

These variables associated with uncertainties are called random variables and carry 

statistical information that is gathered experimentally. The information is mainly the coefficient 

of variation and the type of probability distribution (normal, lognormal,  etc.). Such information 

allows the probability of failure to be calculated, which is the (subjective) probability that the 

system will fail, not meeting the design specifications (BECK, 2008). 

Several methods are available for calculating the probability of failure. Our choice for 

this work is the FORM method (first-order reliability method), which consists of building a joint 

probability function and transforming it into a Gaussian distribution. This transformation 

represents a one-to-one mapping, which takes points from the original domain X to domain Y. 

Within the algorithm of the method, there is an optimization process during the transformation 

between the domains, in which the gradient is calculated and transformed from domain X to Y 

(BECK, 2008). This internal procedure, based on the calculation of gradients, shows a familiarity 

between the method and optimization procedures. 

Therefore, the probability of failure restriction will be considered for the bending 

stresses and the deformations related to deflection and rotation, aiming to improve the safety 

of the results due to the uncertainties of the variables used in the equations, which can lead to 

failures. These uncertainties are identified based on NBR 6118:2023, item 12.4.1, which 

establishes safety coefficients of 1.4 and 1.15, respectively, in the calculation procedure, 

reducing the strengths and increasing the loads. For comparative purposes, the simulation will 

be carried out with and without these coefficients, allowing conclusions to be drawn about their 

influence on the optimization results and the reduction, as expected, of the probability of failure. 

 

3 RESULTS AND DISCUSSION 

In addition to Table 1, Table 2 shows the values adopted for the variables in the 

equations, containing values that are close to practical cases in reinforced concrete structural 

calculations. 
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Table 2 – Values used for constants 
Variable Description Value Unit 

L Beam span 5 m 
q Distributed loading 10 kN/m 

fck Compressive strength of concrete 25000 kN/m² 
fyk Yield strength of steel 500000 kN/m² 

ρ Mass of steel 7850 kg/m³ 

c Cross-section coverage 0.025 m 
E Modulus of elasticity 30000000 kN/m² 

Source: Elaborated by the authors, 2024. 

 
In terms of the probability of failure, statistical data must be provided for calculating 

the probability of failure. We adopted the values exemplified by the Joint Committee on 

Structural Safety (JCCS) in their list of publications available on their website. Table 3 shows 

these values, whilst Table 2 shows the averages. The minimum probability of failure to be met 

in the structural reliability constraints was 0.01%. 

 

Table 3 – Random variables 
Variable Unit Coefficient of variation Distribution 

fyk kN/m² 0.0536 Lognormal 
As m² 0.05 Normal 

h-c m 0.0435 Normal 

fck kN/m² 0.1833 Lognormal 
q kN 0.1 Normal 

Source: Vrouwenvelder et al, 2012. 

 
3.1 Case 1: Disregarding safety coefficients 

By performing the optimization without considering the safety coefficients required by 

the standard, as mentioned above, the final cost obtained by each optimizer can be compared 

in Table 4. Despite the insignificant difference, the SQP optimizer resulted in a lower cost and 

the other methods had similar costs, with active-set providing the highest cost. 

 

Table 4 – Case 1: Optimized cost 
Optimizer Cost (R$) 

SQP 1,192.50 
Interior-point 1,212.44 

Active-set 1,217.63 

Source: Elaborated by the authors, 2024. 
 

Regarding convergence, the graph in Figure 2 shows that the SQP method, in addition 

to having the lowest cost, also converged more quickly than the other methods, so that the 

interior-point required more than twice as many iterations. The active-set showed considerably 

unsatisfactory convergence, taking almost 35 iterations in total. We also noticed high peaks 

around the fifteenth and thirtieth iterations, a peak which then declined. We can also see that 

after the fifteenth iteration until the thirtieth, there was very little variation between the results, 

but without the process being terminated, which led to an unnecessary computational cost, 

ending up with the highest cost of the three methods, as shown below. 

Table 5 shows the results of the optimization variables described in Figure 1 for each 

optimizer. Despite the lower costs, the cross-section resulting from the SQP method had a larger 
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cross-sectional area, but a reduced steel area compared to the other methods, which 

contributed to the lower cost. The active-set resulted in the minimum base assigned among the 

constraints; however, it ended up compensating in height, having the largest dimension. The 

interior-point resulted in the largest steel area, although with the second lowest cost. 

 

Table 5 – Case 1: Result of the project variables 
Optimizer Width (x1) [cm] Height (x2) [cm] Steel area (x3) [cm²] 

SQP 13.69 49 2.06 

Interior-point 13.23 50.3 2.17 
Active-set 12 52.21 2.11 

Source: Elaborated by the authors, 2024. 

 
 Figure 2 – Case 1: Convergence comparison 

Source: Elaborated by the authors, 2024. 

 
In terms of execution, the dimensions presented are not adequate, therefore Table 6 

provides the results closer to practical reality, rounding off the dimensions of the cross-section 

and the number of steel bars and their diameter. Given this organization, we see that the 

reinforcements end up being equal between the methods so that two 12.5 mm diameter bars 

result in a steel area of 2.44 cm², which is more advantageous in terms of execution than using 

three 10 mm bars, with a steel area of 2.36 cm². 
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Table 6 – Case 1: Variables in terms of execution 
Optimizer Width (x1) [cm] Height (x2) [cm] Reinforcement 

SQP 14 49 2ϕ12.5 
Interior-point 14 51 2ϕ12.5 

Active-set 12 53 2ϕ12.5 
Source: Elaborated by the authors, 2024. 

 

3.2 Case 2: Considering the safety coefficients 

 

By adding the safety coefficients required by ABNT NBR 6118:2023, as mentioned 

above, Table 7 shows the result of the optimized cost, as well as the increase in cost compared 

to case 1. Once again, the SQP optimizer resulted in the lowest cost and the smallest increase 

compared to the case without the safety coefficients, just as the active -set resulted in the 

highest cost and the greatest difference. The increase in costs was to be expected since the 

safety coefficients are applied to increase the loads and decrease the resistive stresses, thus 

requiring higher costs to meet the constraints. 

 

Table 7 – Case 2: Optimized cost 
Optimizer Cost (R$) Increase over case 1 (R$) 

SQP 1,239.91 47.41 
Interior-point 1,294.89 82.45 

Active-set 1,362.72 145.09 
Source: Elaborated by the authors, 2024. 

 
Comparing the convergence of the optimizers (Figure 3), the active -set method 

remained with a high computational cost without a variation in the function value that justified 

the high number of iterations. The difference came when compared to the other methods, with 

the interior-point method requiring one less iteration than the SQP, even though the cost was 

higher.  

The results of the design variables (Table 8) show that, as already concluded from the 

costs, the cross-section increased compared to case 1 and the steel area by around 1 cm². Once 

again, the active-set delivered more robust results, although the thickness of the cross-section 

once again resulted in the minimum established in the constraints. 
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Figure 3 – Case 2: Convergence comparison  

Source: Elaborated by the authors, 2024 

 
Table 8 – Case 2: Result of the project variables 

Source: Elaborated by the authors, 2024 

 

Regarding execution (Table 2), as long as only two bars are used, it is clear that the 16 

mm diameter must be used, unlike the 12.5 mm diameter used in case 1. It is worth noting that 

if three 12.5 mm bars (3.66 cm²) were used, the results of the SQP and interior-point optimizers 

would be met, but not the active-set, which delivered more robust results than the previous 

case. 

 
Table 9 – Case 2: Variables in terms of execution 

Optimizer Width (x1) [cm] Height (x2) [cm] Reinforcement 
SQP 17 45 2ϕ16 

Interior-point 13 52 2ϕ16 

Active-set 12 56 2ϕ16 
Source: Elaborated by the authors, 2024 

 
As explained above, safety coefficients are required to ensure greater confidence in 

engineering projects, being drawn from the concepts of structural reliability. A comparison of 

the maximum probability of failure calculated by the FORM method and achieved by the results 

of each optimizer in both cases (Table 10) shows that adding the coefficients considerably 

reduces the probability of failure, even for the sqp method, which was the most economical. 

The large difference in the results of the active-set method indicates that the method was 

oversized so that the minimum probability of failure to be met was in the order of 10-4 and the 

coefficients led the method to results in the order of 10-11. 

Optimizer Width (x1) [cm] Height (x2) [cm] Steel area (x3) [cm²] 
SQP 16.83 44.72 3.41 

Interior-point 12.96 51.64 3.5 

Active-set 12 55.14 3.99 
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Table 10 – Case 2: Impact of the coefficients on probability of failure 
Optimizer Probability of failure – Case 1 Probability of failure – Case 2 

SQP 9.60 x 10-4 1.28 x 10-5 

Interior-point 9.23 x 10-5 2.52 x 10-6 

Active-set 6.35 x 10-5 6.98 x 10-11 

Source: Elaborated by the authors, 2024 
 

4 CONCLUSIONS 

 

Based on the results obtained, the following conclusions can be drawn: 

 

• The optimization methods showed good practical viability in the search for cost 

reduction in the simple bending problem of reinforced concrete beams, discussed 

herein. 

• Incorporating the probability of failure leads to results that enable better analysis by the 

structural designer as it considers variability through the parameters. 

• The SQP method showed the best results, from the point of view of both cost reduction 

and convergence. 

• The active-set method resulted in higher costs and rather problematic convergence, 

requiring longer computational time without viability. 

• Incorporating safety coefficients, as required by ABNT NBR 6118:2023, leads to 

considerable reductions in the probability of failure, ensuring better reliability . 
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