

Artificial Intelligence and specialized software: integrating strategies for resilient planning and urban environmental management**Carlos Quedas Campoy**Professor Doutor, Universidade São Judas Tadeu, Brasil
prof.carloscampoy@usjt.br
ORCID 0000-0002-2692-6237**Amanda Maria Rabelo Souza**Doutoranda, Universidade São Judas Tadeu, Brasil
amanda.rabelo@ulife.com.br
ORCID 0000-0003-1536-7668**Cleide Izidoro**Doutoranda, Universidade São Judas Tadeu, Brasil
cleide.izidoro@ulife.com.br
ORCID 0009-0002-6089-8062

Submissão: 12/06/2024

Aceite: 25/12/2024

CAMPOY, Carlos Quedas; SOUZA, Amanda Maria Rabelo; IZIDORO, Cleide. Inteligência artificial e softwares especializados: integrando estratégias para o planejamento resiliente e gestão ambiental urbana. **Revista Nacional de Gerenciamento de Cidades**, [S. I.], v. 13, n. 89, 2025. DOI: [10.17271/23188472138920256168](https://doi.org/10.17271/23188472138920256168).

Disponível

em: https://publicacoes.amigosdanatureza.org.br/index.php/gerenciamento_de_cidades/article/view/6168Licença de Atribuição CC BY do Creative Commons <https://creativecommons.org/licenses/by/4.0/>

Inteligência artificial e softwares especializados: integrando estratégias para o planejamento resiliente e gestão ambiental urbana

RESUMO

Objetivo - Este artigo objetiva analisar criticamente o potencial da integração entre tecnologias de inteligência artificial e softwares especializados, como estratégias para aprimorar o planejamento urbano resiliente e a gestão ambiental frente às mudanças climáticas.

Metodologia - Fundamenta-se em revisão bibliográfica e levantamento analítico de ferramentas digitais avançadas, com foco em aplicações urbanas.

Originalidade/relevância - Insere-se na lacuna teórica sobre a aplicação integrada da inteligência artificial para enfrentar a alta dimensionalidade de dados urbanos complexos, propondo abordagens metodológicas inovadoras e replicáveis.

Resultados - Identifica-se que tais tecnologias permitem simulações preditivas, geração de soluções espaciais adaptativas e apoio à decisão estratégica, reduzindo a complexidade analítica e ampliando a eficácia do planejamento.

Contribuições teóricas/metodológicas - Oferece-se uma matriz metodológica integrada e flexível, com diretrizes práticas e fundamentos técnico-científicos aplicáveis à governança urbana sustentável.

Contribuições sociais e ambientais - As soluções propostas favorecem a inclusão comunitária, promovem cidades mais resilientes e apoiam a mitigação de impactos ambientais severos.

PALAVRAS-CHAVE: Ambiente urbano. Inteligência Artificial. Resiliência.

Artificial Intelligence and specialized software: integrating strategies for resilient planning and urban environmental management

ABSTRACT

Objective – This paper aims to critically analyze the potential of integrating artificial intelligence technologies and specialized software as strategies to enhance resilient urban planning and environmental management in the face of climate change.

Methodology – The study is based on a literature review and an analytical survey of advanced digital tools, focusing on urban applications.

Originality/Relevance – It addresses the theoretical gap concerning the integrated application of artificial intelligence to tackle the high dimensionality of complex urban data, proposing innovative and replicable methodological approaches.

Results – The study finds that such technologies enable predictive simulations, the generation of adaptive spatial solutions, and support strategic decision-making, reducing analytical complexity and improving planning effectiveness.

Theoretical/Methodological Contributions – The article offers an integrated and flexible methodological framework, with practical guidelines and technical-scientific foundations applicable to sustainable urban governance.

Social and Environmental Contributions – The proposed solutions foster community inclusion, promote more resilient cities, and support the mitigation of severe environmental impacts.

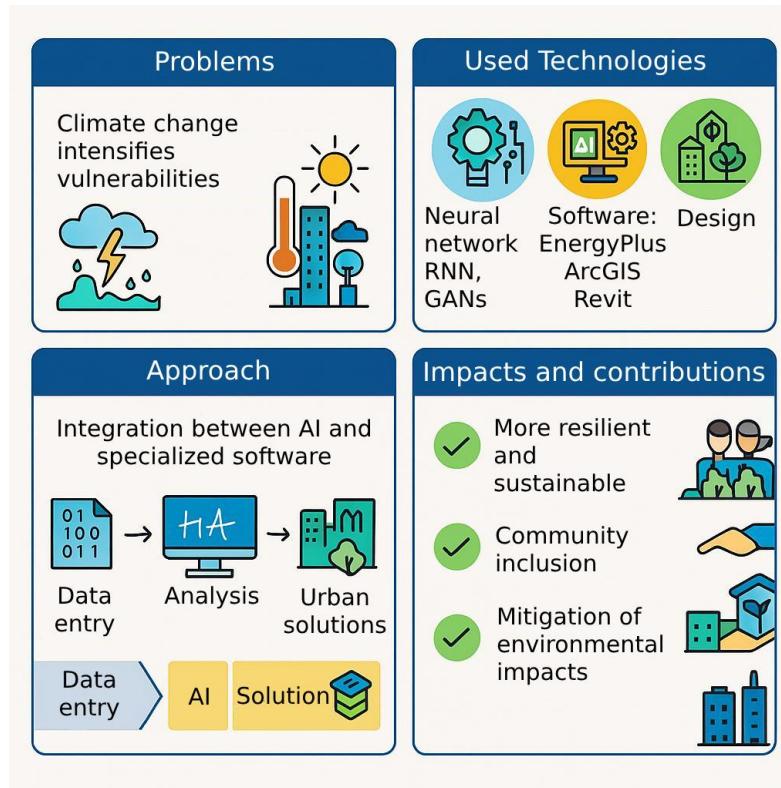
KEYWORDS: Urban Environment. Artificial Intelligence. Resilience.

Inteligencia Artificial y softwares especializados: integrando estrategias para la planificación resiliente y la gestión ambiental urbana

RESUMEN

Objetivo – Este artículo tiene como objetivo analizar críticamente el potencial de la integración entre tecnologías de inteligencia artificial y softwares especializados, como estrategias para mejorar la planificación urbana resiliente y la gestión ambiental frente al cambio climático.

Metodología – Se basa en una revisión bibliográfica y en un levantamiento analítico de herramientas digitales avanzadas, con enfoque en aplicaciones urbanas.


Originalidad/Relevancia – Se inserta en la brecha teórica sobre la aplicación integrada de la inteligencia artificial para enfrentar la alta dimensionalidad de los datos urbanos complejos, proponiendo enfoques metodológicos innovadores y replicables.

Resultados – Se identifica que dichas tecnologías permiten simulaciones predictivas, generación de soluciones espaciales adaptativas y apoyo a la toma de decisiones estratégicas, reduciendo la complejidad analítica y ampliando la eficacia de la planificación.

Contribuciones Teóricas/Metodológicas – Se ofrece una matriz metodológica integrada y flexible, con directrices prácticas y fundamentos técnico-científicos aplicables a la gobernanza urbana sostenible.

Contribuciones Sociales y Ambientales – Las soluciones propuestas favorecen la inclusión comunitaria, promueven ciudades más resilientes y apoyan la mitigación de impactos ambientales severos.

PALABRAS CLAVE: Ambiente urbano. Inteligencia Artificial. Resiliencia.

GRAPHICAL ABSTRACT

1 INTRODUCTION

Contemporary cities have increasingly experienced impacts from climate change and extreme events (Biernath, 2025; Cornwell, 2024; Erdenesanaa, 2025; Maes, 2024). These environmental phenomena become catalysts for pre-existing socioeconomic vulnerabilities, among others, compromising the quality of urban life. Intense heatwaves and severe storms causing flooding are clear examples of direct consequences of climate changes resulting from anthropocentric actions. Regions in Brazil have been experiencing transformations from a semi-arid climate to an arid one (Oliveira, 2024). Meanwhile, approximately half of the world's most populous cities are becoming increasingly rainy (Bernard; Mooney, 2025). Such reality is aggravated by historical deficiencies in urban planning (Edwards, 2004; McDonough, 2024).

Given this dynamic context – characterized by the interaction among multiple environmental, social, and economic variables –, the urgency emerges to profoundly rethink traditional or isolated planning strategies and environmental management (Ávila; Silva, 2017; Silva; Cândido; Lima; Silveira, 2024). Innovative visions and practices must be developed, promoting resilient planning and integrated and efficient environmental management in urban contexts. The concept of resilience is understood not merely as the capacity to withstand adverse impacts but, above all, as the ability for active adaptation and positive transformation when facing crisis situations (Datola, 2023; Edwards, 2004; McDonough, 2024; Ribeiro; Gonçalves, 2019).

However, the challenge of addressing these issues often exceeds the organic capacity for comprehension due to the extraordinary complexity of involved variables. Cities, being complex systems par excellence, are characterized by multiple overlapping and interdependent variables interacting across various scales and temporalities in a nonlinear manner (Morin, 2005). Another delicate point is the quality of data matrices and the type of treatment applied or the level of understanding achieved in pattern identification (Martínez-Peláez *et al.*, 2023; Jacob, 2024; United Nations, 2015). Numerous and interrelated variables and data constitute a high-dimensional conceptual space (Ames; Mazzotti, 2023; Zenil *et al.*, 2020), whose analysis is frequently compromised by the phenomenon known as the “curse of dimensionality” (Bodt *et al.*, 2018). This phenomenon refers, among other conditions, primarily to the increasing difficulty in extracting relevant information as the number of analyzed variables grows exponentially, thereby demanding differentiated analytical approaches.

In high dimensionality, analysis does not begin from an empty and inert space, such as Cartesian space, but rather from an abundance of data within an active spatiality. Each datum is understood as a complex dimension in itself, encompassing both quantitative and qualitative aspects whose multiple individual attributes may connect with those of other data in counterintuitive ways. Differences between maximum and minimum Euclidean distances among data points become irrelevant, greatly hindering pattern identification. Therefore, only through computerized probabilistic approaches is it possible to calculate the spaces and weights of relationships between data, enabling some pattern identification through the reduction of high dimensionality and its corresponding phenomenon, without critical losses of essential attributes, even from an epistemological viewpoint (Ames; Mazzotti, 2023; Bodt *et al.*, 2018;

Zenil *et al.*, 2020).

Thus, it is reinforced that traditional planning strategies—often rigid, disconnected, linearly structured, and passive—prove inadequate or superficial for managing this magnitude of data or variables and their dynamic interactions. Employing innovative approaches, which integrate active technological methods, particularly those based on artificial intelligence but also supported by other specialized software, becomes essential (Bernstein, 2022; Campo, 2022; Chaillou, 2022; Leach, 2022). Another advantage of integrating technologies and methods lies precisely in the complementarity of criteria aimed at overcoming the inherent limitations of any given system.

In these regards, this article proposes exploring the potential of artificial intelligence combined with specialized software as an integrated and effective platform to mitigate the analytical complexity arising from high dimensionality in urban contexts. The intention is thereby to pave the way for more robust and integrated solutions that can significantly contribute to urban resilience and socio-environmental sustainability.

The academic and social relevance of the proposed topic is justified not only by the need to contain the intensification and worsening of the consequences arising from the aforementioned extreme climatic phenomena but also by the urgent demand for theoretical and practical responses that are commensurate with the complexity of contemporary urban challenges. To the academic community, in particular, the development of integrative approaches is of interest as it provides applicable and replicable solutions within the field of urban management, stimulating fruitful debates and opening new avenues for future research.

Moreover, the urban population may reap direct and indirect benefits from the application of these innovative technologies and strategies. Although such benefits manifest predominantly in the medium and long term, given the strategic nature of the proposed interventions, it is expected that they will foster tangible improvements in quality of life, collective security, and environmental sustainability of cities, thereby consolidating urban environments that are more resilient and prepared for future challenges.

Having delimited the thematic scope and presented the central issue, the research objectives are now precisely established.

2 OBJECTIVES

The general objective consists of critically analyzing the potential arising from the integration of artificial intelligence-based technologies and specialized software, aimed at improving contemporary resilient urban planning and environmental management processes in response to climate change within the built environment.

Specific objectives include identifying intrinsic limitations of the technologies employed, as well as reflecting upon the technical implications resulting from their adoption, thus providing a negotiated understanding of the opportunities and challenges raised by such integration. Complementarily, the intention is to propose a replicable methodology for

implementing these technologies, including compiling technical and operational recommendations targeted at urban planners and decision-makers.

3 METODOLOGY

The research methodology is based on a literature review (Lakatos; Marconi, 2019), aiming to gather core concepts regarding climate change, urban resilience, and strategic planning, in addition to identifying previous studies that correlate these themes with the use of advanced digital technologies. Complementarily, a careful and analytical survey is undertaken to assess specialized software and artificial intelligence-based tools appropriate to the urban issues investigated.

4 RESULTS

Through the proposed technological integration, it becomes possible to position the computer as an active partner (or a specialized consultant) for planners, managers, architects, and urban designers. From a broad analytical perspective, especially in the pursuit of patterns, it enables predictive simulation of the impacts of climate change, as well as energy and thermal optimization of buildings and urban spaces, the use of generative design aimed at formulating adaptive solutions for urban resilience, and adaptive planning grounded in prospective scenarios and climate forecasts. These technologies allow for integrated management of urban environmental data, substantially strengthening support for strategic decision-making and local governance.

Below are presented a series of analytical insights and reflections that aim to bridge urban and environmental problems with plausible solutions, manifested in the form of strategies and supported by the field of applied computing. All these elements converge toward addressing data complexity and reducing high dimensionality.

The adoption of alternative energy sources emerges as a key strategic measure to mitigate the harmful effects of urban heat islands and reduce greenhouse gas emissions in contemporary cities (Edwards, 2004; McDonough, 2024; van Lengen, 2021). By ensuring access to clean and economically viable energy, sustainable progress is promoted—progress that is both economic and social. In this regard, the use of predictive artificial intelligence techniques, particularly those based on machine learning such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) (Bernstein, 2022; Leach, 2022), may represent a significant advance in optimizing urban energy consumption.

Furthermore, these techniques can be employed for sequential forecasting, such as anticipating energy consumption in buildings based on historical data and climatic factors. Specialized software such as EnergyPlus, Autodesk Insight, and IES VE (Integrated Environmental Solutions) are examples of effective tools to serve this purpose, providing support for informed decision-making. These technologies also enable the efficient reduction of high dimensionality through automatic selection of the most relevant variables (feature selection), clustering of similar energy consumption patterns, and the generation of predictive models that operate with

a reduced and optimized number of key variables, without compromising the quality and accuracy of the resulting information.

Contemporary urban planning strategies, in the face of the intrinsic uncertainties brought about by climate change, demand adaptive methods capable of transcending the structural limitations and rigidity typical of traditional approaches (Edwards, 2004; McDonough, 2024; van Lengen, 2021). The need to incorporate strategies that explicitly acknowledge the unpredictability inherent to climatic phenomena calls for a profound reassessment of conventional urbanism paradigms.

In this context, the application of artificial intelligence-based technologies, particularly those grounded in stochastic predictive models and dynamic simulations, emerges as a promising alternative. Examples include Convolutional Neural Networks (ConvNets), applied to identify spatial patterns in thermal images and urban maps, allowing for the automatic monitoring and optimization of buildings' energy performance at the urban scale (Bernstein, 2022; Leach, 2022). Other tools such as ArcGIS Urban, CityEngine, and UrbanFootprint, by enabling detailed technical prospective analyses and simulations based on future scenarios, tend to confer integrated precision and adaptability to planning strategies.

Additionally, the aforementioned techniques contribute significantly to mitigating the problem of high dimensionality inherent in urban planning. This refers to statistical analyses with a stochastic basis, such as Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and sensitivity analyses (Arnold; Kane; Lewis, 2019; Belkina *et al.*, 2019). Identifying the most relevant critical scenarios—while discarding less influential variables—combined with unsupervised learning, makes it possible to focus predictive efforts solely on the most probable scenarios, thereby simplifying information management without sacrificing technical robustness or analytical accuracy.

Inadequate urban configuration has been recognized as a determining factor in worsening the impacts of climate change, particularly by amplifying environmental and social vulnerabilities. Faced with this scenario, the conception of a sustainable urban form emerges as a strategic solution, achieved through careful evaluations and spatial restructuring of its fundamental components, such as buildings, neighborhoods, and urban infrastructure (Edwards, 2004; McDonough, 2024; van Lengen, 2021).

Artificial intelligence—specifically the approach known as generative design—can offer a substantial methodological contribution to this challenge. Generative Adversarial Networks (GANs) are suggested for generating alternative urban scenarios with optimized spatial layouts, aimed at improving natural ventilation, sunlight exposure, and environmental sustainability, allowing planners to rapidly explore multiple design alternatives before making final decisions (Bernstein, 2022; Leach, 2022). Variational Autoencoders (VAEs) are also recommended, used for the creation of synthetic urban models capable of generating diverse urban layouts that simultaneously meet predefined environmental, social, and economic criteria, enabling rapid evaluation of various spatial solutions.

Specialized technological tools such as TestFit, Arqgen, Architectures, and Autodesk Forma employ generative algorithms to explore optimized spatial solutions, allowing comparisons across environmental, social, and economic parameters. The effectiveness of these

methods lies largely in their ability to significantly reduce the dimensionality of the analytical space; through advanced generative algorithms, unfeasible solutions are eliminated while prioritizing spatial configurations that best respond to sustainability, resilience, and efficiency criteria.

An integrative strategy of urban governance is understood as a necessary alternative, grounded in the enhancement of local autonomy, institutional strengthening, and technical capacity-building for urban managers.

In this regard, artificial intelligence-based technologies—particularly those focused on predictive analysis and management of urban data, such as Explainable Artificial Intelligence (XAI)—represent promising instruments (Bernstein, 2022; Leach, 2022). Specialized software such as ArcGIS Hub, IBM Watson Analytics, and Microsoft Power BI exemplify tools capable of transforming vast datasets into visually intelligible and directly actionable information for decision-makers. By employing smart dashboards with advanced visualization and clustering features, these technologies can reduce high informational dimensionality, automatically synthesizing and highlighting the variables with the greatest analytical and decision-making relevance. This procedure greatly facilitates the understanding of complex urban phenomena, enabling faster, more secure decision-making processes supported by explainable and transparent artificial intelligence.

The intensification of the urban heat island effect constitutes one of the most significant environmental challenges in contemporary cities, resulting in substantial increases in local temperatures, thermal discomfort, and elevated public health risks (Edwards, 2004; McDonough, 2024; van Lengen, 2021). In this context, effective interventions stand out, such as the adoption of green infrastructure and the implementation of sustainable rooftops—either vegetated or high-reflectance (cool roofs)—which reduce urban temperatures by mitigating solar radiation absorption.

Complementing these physical techniques, artificial intelligence-based technologies can play a significant role in enhancing the diagnosis and effective implementation of such interventions. Specifically, computer vision and remote sensing applications—operated through Convolutional Neural Networks (ConvNets)—are highlighted (Bernstein, 2022; Leach, 2022). Integration with advanced software such as ENVI, Green Roof Energy Calculator, and i-Tree Eco enables automatic identification of priority urban surfaces for green interventions by means of advanced analysis of aerial and satellite imagery. Furthermore, the application of these technologies promotes a significant reduction in analytical complexity through intelligent spatial segmentation—automatic clustering of critical areas—allowing a precise, targeted approach to the regions most in need of mitigation measures against urban thermal effects.

Passive design constitutes a fundamental architectural approach to addressing recurring issues in the built environment, notably those related to excessive heating and thermal discomfort in buildings (Edwards, 2004; McDonough, 2024; van Lengen, 2021). This issue gains increased relevance in the context of climate change, requiring technical responses capable of mitigating these impacts without overburdening artificial energy consumption or generating carbon footprints through the industrial production of materials.

In this scenario, the strategic positioning of buildings—carefully orienting their layouts

in relation to sunlight and wind, as well as promoting cross ventilation—proves decisive for optimizing thermal comfort and reducing the demand for additional mechanical systems. Complementarily, passive design is particularly directed at the selection or development of materials, forms, textures, and colors capable of offering the greatest possible thermal and lighting comfort. It emphasizes the use of materials in their natural state. Exemplary construction techniques include rammed earth, adobe, superadobe, green roofs, among others (van Lengen, 2021).

To maximize the effectiveness and precision of these passive solutions, generative artificial intelligence—such as Conditional Generative Adversarial Networks (cGANs)—is recommended. This technology is natively available in tools like Autodesk Forma, which enable the analysis of specific and adaptive spatial solutions conditioned by environmental constraints (climate, sunlight, ventilation, thermal performance), thus fostering sustainable urban planning proposals. Alongside this, one may apply the analytical technique of Genetic Algorithms, available in parametric visual scripting tools such as Grasshopper (a plug-in for Rhinoceros software). It is important to note here the analytical characteristic of these tools, as they also possess generative features, which will be explained in the next strategic approach.

Continuing with the analytical aspect, Genetic Algorithms are frequently used to compare multiple modular configurations of buildings and neighborhoods, providing a basis for decision-making grounded in adaptive spatial optimization and significantly reducing the solution search space. Considering an expanded technological integration, specialized software such as Autodesk Revit combined with Insight, ClimateStudio, and the parametric tools Ladybug and Honeybee—also available for the Grasshopper environment—are recommended.

These instruments significantly reduce the inherent complexity of the design process by employing techniques that assist in the careful selection of the most effective spatial positioning variables, particularly from thermal and energy perspectives. Such tools allow for the intelligent clustering of similar spatial configurations, providing robust means to eliminate inefficient alternatives while highlighting viable solutions, thus contributing decisively to reducing analytical complexity without compromising the quality and rigor of the design proposals.

Active design emerges as a complementary strategy, positioning the machine as a generative entity of plausible geometric solutions. In this case, it is not the opposite of passive design, since the latter—as discussed—refers to strategies and constructive elements also understood under the term low-tech (Edwards, 2004; McDonough, 2024; van Lengen, 2021). Active design, particularly at the urban scale, reveals a theoretical, conceptual, and morphological framework known as Smart Cities (Amorim, 2016; Bakelmun *et al.*, 2018; Kosowatz, 2020).

Grounded in the careful integration of mechanical technologies with the optimized use of renewable energy sources, active design aims to ensure comfortable indoor environments through intelligent and dynamic control of climate systems. It is also dedicated to developing resilient and sustainable cities for human beings—not for private automobiles. Smart Cities are urban environments that utilize digital technologies, urban sensors, big data analytics, and artificial intelligence to optimize infrastructure, public services, and governance processes,

promoting greater efficiency, sustainability, and quality of life for citizens. These cities integrate intelligent systems for transportation, energy, waste management, security, and urban planning, allowing for data-driven decision-making in real time.

In this context, artificial intelligence would play a fundamental role by enabling the automated and adaptive management of these systems, especially through the use of machine learning algorithms and intelligent automation. Examples include: Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM), Generative Adversarial Networks (GANs), Multi-Agent Systems (MAS), Reinforcement Learning (RL), Natural Language Processing (NLP), and Autoencoders and Principal Component Analysis (PCA) (Bernstein, 2022; Campo, 2022; Chaillou, 2022; Leach, 2022).

These artificial intelligence tools can be applied primarily in pattern recognition based on historical and real-time data. Their applications include image recognition for urban surveillance, as well as traffic and mobility analysis. In the latter, complex simulations of interactions between autonomous vehicles, urban infrastructure (including traffic lights), and pedestrians are used to improve mobility and reduce congestion. These tools may also be employed to forecast energy demand in relation to urban climate patterns and public and private service needs. Another promising use is the creation of realistic simulations of urban environments to assist architectural planning and scenario modeling of urban growth, even with the aid of models inspired by fungal development. The analysis of citizen feedback on services, detection of complaints, and monitoring of social media to anticipate urban needs can also be enhanced by these tools.

Specialized software such as DesignBuilder, TRNSYS, and Siemens Desigo CC enable the practical integration of these strategies through the active and continuous management of essential parameters for energy and thermal performance in buildings.

These technologies also enable a significant reduction in analytical complexity—or in the high dimensionality characteristic of the active design of Smart Cities—by identifying, selecting, and monitoring only the most critical parameters for thermal performance. This simplification, associated with the ability for continuous and optimized adaptation to changing environmental conditions, results in reduced operational complexity without compromising system efficiency or the desired environmental comfort.

Examples of cities that have developed certain aspects of the Smart City concept include Singapore, Songdo, London, Copenhagen, New York, Paris, Granada, Rota, Aveiro, and São Sebastião (Amorim, 2016; Bakelmun *et al.*, 2018; Kosowatz, 2020; Prefeitura de São Sebastião, 2023).

Singapore is frequently cited as one of the smartest cities in the world. The government implemented the Smart Nation program, which integrates technology into various aspects of urban life, from efficient public transportation to digitized healthcare systems. The city uses real-time sensors and data to monitor traffic, air quality, and energy consumption, promoting highly efficient urban management.

Songdo, located in South Korea, is recognized as a ubiquitous city due to its ambitious proposal to integrate the entire urban system into a network, using sensors and media connected to a centralized control hub. Coordination among devices allows for numerous

applications and renders information omnipresent, given that the city's buildings are interconnected.

London, Copenhagen, and New York have implemented advanced technologies to adjust traffic lights in realtime and optimize public transportation. In Paris, artificial intelligence supports the planning of green spaces.

In Granada, Spain, the 5G CityBrain project was developed, which employs advanced artificial intelligence, sensors, and 5G internet connectivity to enhance real-time urban management in areas such as pollution monitoring, data security, and tourist flow analysis. Rota, also located in Spain, implemented artificial intelligence as a tool for personalized tourist guidance through the Cicerone project. The algorithmic platform personalizes tourist routes according to visitor preferences and collects data to create a digital twin of the city, enabling efficient real-time resource management, especially during peak tourist seasons.

In Aveiro, Portugal, an intelligent urban management system was introduced that provides a data-driven approach to traffic analysis, identifies opportunities for energy consumption reduction, and detects maintenance issues such as potholes in roads and sidewalks, as well as the onset of risks such as floods and fires.

Researchers from UNESP developed an artificial intelligence model to map landslide risk areas in São Sebastião, Brazil. The study aimed to develop a tool that could be applied to support decision-making, urban planning, and risk management.

Returning to urban planning and environmental management strategies, the careful selection of resilient and durable materials emerges as an essential strategy in addressing the structural vulnerability of buildings, particularly in light of the increasing frequency of extreme weather events (Edwards, 2004; McDonough, 2024; van Lengen, 2021). The use of materials specifically designed to provide structural resistance and enhanced thermal performance—such as reinforced concrete and impact-resistant window systems—constitutes an important response to the mitigation of potential damages caused by such adverse phenomena.

It is important to note that, although some of these materials pose challenges related to greenhouse gas emissions during their production, they are often, depending on the context, the only feasible alternatives from a cost-benefit, technical, or labor-availability perspective. Thus, a crucial factor emerges in the choice of strategies and technologies: the contextual viability—social, cultural, economic, financial, technical, and human resource-related. Despite the wide range of technologies previously discussed, this particular decision must ultimately be assessed by human planners and managers, although artificial intelligence and other software can provide dynamic and up-to-date inputs.

In this context, artificial intelligence may offer remarkable advances through machine learning techniques and predictive analysis, enabling early and effective evaluations of material performance under multiple climatic conditions (Bernstein, 2022; Leach, 2022). Convolutional Neural Networks can be applied to microscopic analysis of material structures, identifying flaws and optimizing alloy and polymer compositions. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) models simulate material behavior under different stress and aging conditions, predicting long-term performance. Generative Adversarial Networks (GANs) assist in generating novel simulated materials with specific properties, accelerating the development of

optimized compositions and enabling the creation of digital prototypes for computational and physical testing (rapid prototyping) before manufacturing.

Integration with computational tools such as Ansys Mechanical, Abaqus, and Autodesk Inventor stands out for enabling detailed simulations and reliable predictions of the structural behavior of selected materials.

These technologies also enable a significant reduction in the analytical complexity associated with structural assessments through finite element techniques, as well as by identifying and automatically selecting only the most critical physical variables that determine final performance. As a result, virtual testing becomes substantially faster, more accurate, and economically viable, simplifying complex analyses without compromising the integrity or quality of proposed structural solutions.

Nature-Based Solutions (NbS) have emerged as a promising alternative to address the negative impacts of heatwaves and flooding in urban contexts (Edwards, 2004; McDonough, 2024; van Lengen, 2021). Through the strategic implementation of vegetation, green areas, and water surfaces in cities, it becomes possible to ensure both effective thermal protection and more efficient water management, contributing directly to the socio-environmental resilience of urban centers.

Artificial intelligence-based technologies for spatial and environmental analysis would play a decisive role in enhancing the planning and implementation of such interventions. In particular, geoprocessing techniques supported by Convolutional Neural Networks, combined with advanced machine learning algorithms, would enable automatic and accurate classification of priority areas for intervention based on specific spatial and environmental patterns (Bernstein, 2022; Leach, 2022). Specialized software such as ArcGIS Pro, Nature4Cities, and CityEngine exemplify technological tools capable of implementing these strategies with a high degree of precision.

These technologies contribute decisively to reducing the high dimensionality intrinsic to urban analysis in conjunction with Nature-Based Solutions through the application of advanced spatial clustering techniques. In doing so, the analytical landscape is significantly simplified, allowing managers to clearly identify the most sensitive regions and simulate strategic intervention priorities, thereby facilitating qualified decision-making processes aimed at promoting urban sustainability.

Frangible or fragile architecture, also known by the English expression safe-to-fail, is a relevant design strategy in light of the frequent and intense occurrence of extreme climate events (Ahern, 2011). Its core principle lies in the deliberate design of buildings capable of withstanding controlled failures and anticipated damage, in order to prevent catastrophic collapses in severe climatic contexts. Additionally, such structures often adopt aerodynamic or rounded forms, specifically designed to minimize destructive impacts from storms, floods, and strong winds.

In this field, artificial intelligence would play a crucial role, particularly through the application of advanced structural and aerodynamic simulation techniques combined with machine learning. The same tools previously mentioned for durable and resilient materials are relevant here. Specialized tools such as Autodesk CFD, Rhinoceros with Grasshopper (notably

the Kangaroo Physics component), and Ansys Fluent exemplify software capable of modeling, predicting, and evaluating extreme scenarios with a high degree of accuracy.

These technologies also contribute to reducing the analytical and dimensional complexity associated with extreme event simulations. Complementarily, optimization algorithms enable structural solutions to be selected and prioritized according to strict robustness and performance criteria, allowing planners and designers to develop buildings capable of absorbing controlled impacts, minimizing structural damage, and enhancing the resilience of the built environment.

The concept of flexible design emerges as a strategic response to the structural limitations of traditional buildings, which are often characterized by intrinsic rigidity that makes them vulnerable to rapid climatic and socioeconomic transformations (Edwards, 2004; McDonough, 2024; van Lengen, 2021). As a counterpoint to this rigidity, the adoption of architectural designs conceived with modular, dismountable, and reusable systems ensures not only greater future adaptability of buildings, but also enables efficient management of material, economic, and environmental resources.

In this regard, the integrated use of advanced artificial intelligence technologies—especially those previously discussed, such as generative methods and algorithms (visual programming)—emerges as a strategic tool for the design and implementation of adaptive modular projects. Software such as Rhino integrated with Grasshopper, PlanFinder, and Autodesk Fusion 360 stand out for their ability to automatically generate multiple adaptive modular solutions, ensuring flexibility and optimization of the design process.

These technologies are especially valuable for effectively reducing the analytical complexity inherent to adaptive modular design. Through the application of generative algorithms and advanced selection techniques, only the most robust and efficient solutions are highlighted, significantly reducing the high dimensionality of the design space by emphasizing only the most relevant modules and components for the desired sustainability and resilience. Thus, a scenario of informed decision-making is created, capable of effectively addressing future urban needs.

Humanitarian-centered technological approaches are presented as indispensable strategies—as well as integrative ones—in light of the limitations often found in technical solutions, especially those related to low social acceptance and reduced effectiveness due to the disconnect between proposals and the actual needs of the community (Edwards, 2004; McDonough, 2024; van Lengen, 2021). These approaches seek to establish meaningful connections between formal scientific knowledge and the traditional knowledge of local communities, engaging occupants in active co-creation and participatory decision-making processes, all while remaining conscious of environmental stewardship.

In this context, we return to the contributions of Explainable Artificial Intelligence (XAI) and advanced Natural Language Processing (NLP) techniques, used to properly capture and interpret community aspirations, perceptions, and experiences. Specialized software such as Decidim, Commonplace, and CitizenLab exemplify technological platforms capable of promoting broad and active citizen participation in urban planning and management processes, based on dialogical and collaborative foundations.

These technologies would play a decisive role in reducing the high dimensionality often found in complex qualitative data by synthesizing qualitative information collected from communities. Advanced techniques such as semantic clustering enable efficient and accurate consolidation of opinions and perceptions, offering a synthetic yet in-depth view of community expectations and demands. In this way, more responsive and socially legitimized urban management becomes feasible, significantly enhancing the success of solutions implemented in the built environment.

In summary, contemporary urban planning strategies, when integrated with artificial intelligence technologies and specialized software, tend to form a relevant framework to support decision-making processes, including those related to environmental management.

However, beyond the inherent limitations of all systems (Bernstein, 2022; Leach, 2022)—whose negative impacts may be reduced through the technological integrations proposed—other issues are identified. There are technical limitations, such as the significant dependence on the quality and availability of the data used (Coeckelbergh, 2023). Predictive models, generative techniques, and optimization tools rely directly on the accuracy and scope of the data sets, which implies risks associated with insufficient or biased data collection, especially in complex or poorly structured urban contexts.

Another limitation lies in the high computational and technical capacity required for the full deployment of these tools. Although powerful, such technologies often demand advanced digital infrastructure and specialized technical skills, potentially limiting their widespread adoption, especially in less developed urban areas or those facing significant institutional and financial constraints.

From a technical standpoint, one must also consider the high electricity demand associated with these systems, which appears paradoxical in light of their environmental focus (Coeckelbergh, 2023). However, to mitigate this issue, the heat generated by data centers is already being used to heat homes in Europe, representing a redistribution of demand (Jurgens *et al.*, 2024).

Another concern relates to the potential for algorithmic ethical bias in automated decision-making. Especially in human-centered and generative methodologies, there is a risk of reproducing implicit biases or preferences present in historical data, which requires careful oversight and constant revision (Coeckelbergh, 2023).

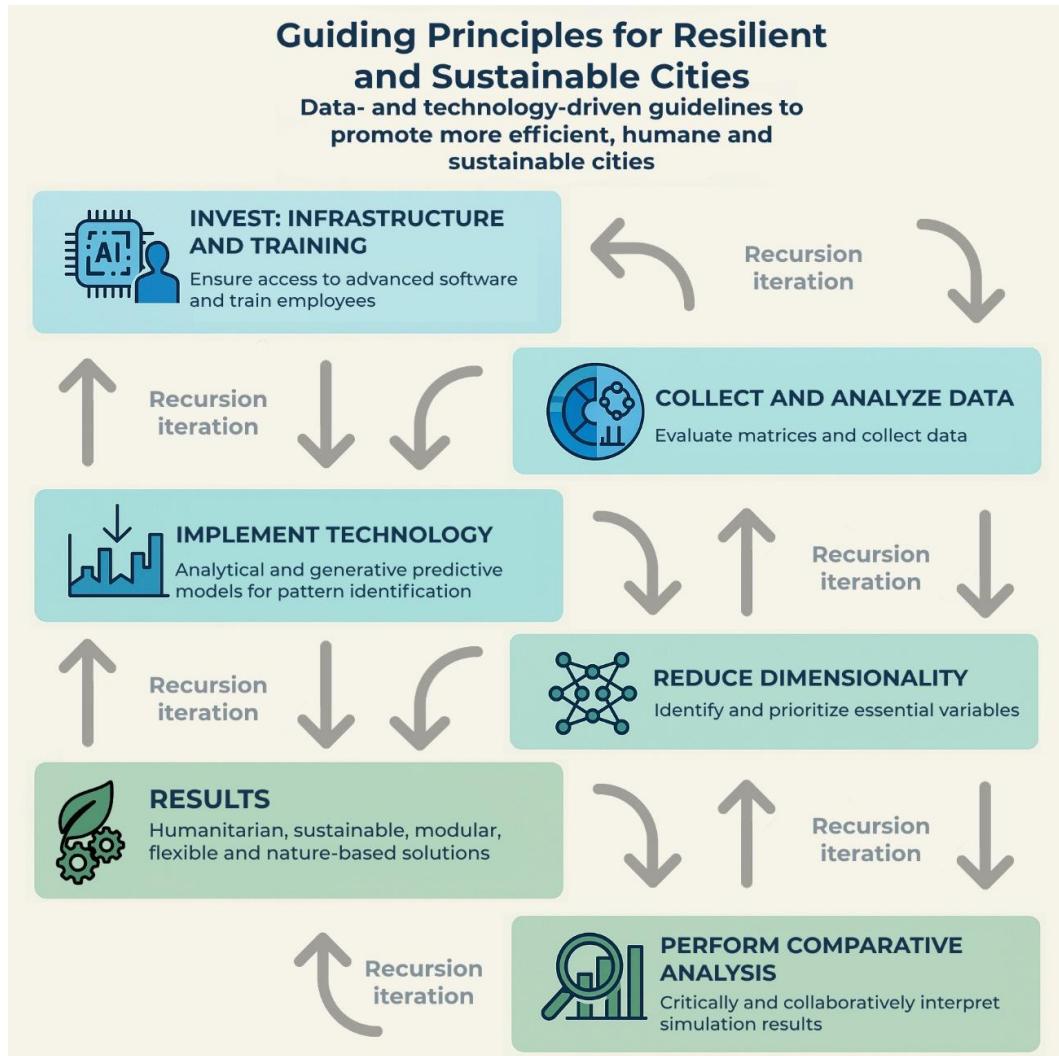
Additionally, the simplification of variables through high dimensionality reduction—although necessary—may inadvertently lead to the exclusion or neglect of seemingly secondary factors, which may prove significant in the long term. Dimensional analysis must therefore be applied with caution to ensure that essential variables for urban resilience and socio-environmental and cultural sustainability are not overlooked.

It is worth emphasizing that technological integration necessarily requires continuous training for planners and urban managers, generating a demand for systematic investments in specialized technical education. These conditions may represent financial and organizational challenges for many cities, especially those with more limited institutional resources.

To formalize a synthetic framework for the methodological proposal and for the technical/operational recommendations—from a beneficial technological standpoint—capable

of supporting urban planners and environmental managers, it is first suggested to invest in specialized technological infrastructure and human resources. This step includes ensuring access to advanced software and artificial intelligence, as well as training collaborators through technical knowledge acquisition. Not in a linear sequence, but rather as a networked strategy, the collection of data is to be undertaken with attention to the quality of the matrices. Next, the practical implementation of the previously selected technological tools is recommended. At this stage, advanced predictive models and generative techniques are employed to elaborate and analyze detailed future urban scenarios. These simulations allow for the understanding—through pattern recognition—of the potential impacts of climate change and the testing of adaptive solutions capable of increasing the resilience of cities to extreme events.

Complementarily, a systematic approach is adopted for reducing the high dimensionality inherent to complex urban phenomena. Artificial intelligence techniques and specialized software enable the identification and prioritization of only the essential variables for decision-making processes, significantly simplifying analyses without compromising their integrity and technical rigor.


A careful and collaborative comparative analysis of the simulation results is then conducted, aiming to critically interpret the effectiveness of the integrated technological solutions and to clearly identify their limitations. These actions, which are recursive and iterative—since each stage helps to revisit and validate the others—will result in a set of guidelines or guiding principles valuable for urban managers and public policy-makers. This facilitates the practical implementation of the proposed technologies, contributing to more resilient and sustainable strategic planning.

In this context, it is imperative to prioritize modular, flexible, and nature-based solutions as a direct response to climate complexity and uncertainty, thereby strengthening urban resilience. Through a planning and management model centered on humanitarian technologies, ethical, transparent, and interpretable technical decisions must be ensured, promoting community acceptance and participation—since the treatment of data shapes both systematic procedures and the types of actions to be implemented.

In general terms, continuously training technical and administrative teams in the use and critical interpretation of these technologies—ensuring well-founded decisions—must be aligned with local needs while respecting the sociocultural characteristics of specific regions in the country.

Methodological guiding principles are configured as fundamental elements to foster cities that are more resilient, sustainable, and prepared to effectively address the challenges posed by contemporary climate change and other complex components. To complement this methodological synthesis, Figure 1 is presented:

Figure 1 – Synthesis of the Methodological Proposal

Elaborated by the authors.

5 CONCLUSION

In light of the contemporary scenario marked by the increasing complexity of urban variables and the intensification of climate change, this article sought to critically reflect on the potential arising from the integration between specialized tools and technologies based on artificial intelligence for enhancing urban resilience and environmental management in the built environment. Throughout the discussion, it was demonstrated that this humanitarian technological integration can significantly mitigate the effects of the analytical high dimensionality inherent to current urban challenges, enabling more effective, robust, and contextually adaptive decision-making.

The proposed methodology—based on the combination of predictive simulations, generative analysis techniques, dimensionality reduction, and human-centered approaches—presents technical feasibility for expanding adaptive capacity and urban sustainability in the face

of extreme climate events. Despite the challenges addressed—with the intent of maintaining a balanced and critical understanding of the objectives—an additional outcome is the provision of a solution matrix, objectively structured and technically viable for immediate application in urban contexts affected by such phenomena, thus enabling informed and substantiated decision-making.

As a development of the reflections presented, several directions for further investigation are envisioned. Initially, in-depth studies on the ethical and social aspects stemming from the implementation of the technologies discussed in urban contexts are highlighted, particularly considering the social impacts resulting from the incorporation of artificial intelligence into urban planning and management. Furthermore, it is recommended that future research conduct comprehensive longitudinal analyses dedicated to evaluating the long-term economic and environmental impacts of the proposed technological solutions, ensuring a more complete and integrated understanding of their structural effects.

Additionally, it is essential to expand the practical application of the methods and technologies discussed to diverse regional contexts, including different climatic and sociocultural conditions, thereby seeking to validate or adapt the proposed strategies from a global and pluralized perspective. Finally, it is suggested to explore in greater depth the potential for social inclusion offered by such technologies, particularly regarding the promotion of active participation of local communities in urban planning processes supported by artificial intelligence, strengthening their social legitimacy and contributing to the effective democratization of contemporary urban governance.

6 REFERENCES

AHERN, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. *Landscape and Urban Planning*, v. 100, n. 4, 2011. Disponível em: <http://dx.doi.org/10.1016/j.landurbplan.2011.02.021>. Acesso em: 15 mar. 2025.

AMES, M. G.; MAZZOTTI, M. **Algorithmic modernity**. New York: Oxford University Press, 2023.

AMORIM, A. L. Cidades inteligentes e City Information Modeling. In: SIGraDi 2016, XX Congress of the Iberoamerican Society of Digital Graphics. Buenos Aires, Argentina, 2016. Disponível em: <https://www.proceedings.blucher.com.br/article-details/cidades-inteligentes-e-city-information-modeling-24838>. Acesso em: 15 mar. 2025.

ARNOLD, T.; KANE, M.; LEWIS, B. W. **A computacional approach to statistical learning**. New York: CRC Press, 2019.

ÁVILA, L. B.; SILVA, A. S. Instrumentos de apoio à gestão ambiental urbana. *Revista Nacional de Gerenciamento de Cidades* , [S. I.], v. 5, n. 36, 2017. DOI: 10.17271/2318847253620171586. Disponível em: https://publicacoes.amigosdanatureza.org.br/index.php/gerenciamento_de_cidades/article/view/1586. Acesso em: 15 mar. 2025.

BAKELMUN, A.; DIA, H.; GLACKIN, S.; HARGROVES, K.; LIESKE, S. N.; NEWMAN, P.; PETTIT, C.; SHEARER, H.; THOMSON, G. Planning support systems for smart cities. *City, Culture and Society*, Holand, v. 12, 2018. Disponível em: <https://sbenrc.com.au/wp-content/uploads/2017/12/Pettit-Bakelmun-Lieske-Glackin-Hargroves-Thomson-Shearer-Dia-Newman-2017.pdf>. Acesso em: 15 mar. 2025.

BELKINA, A. C.; CICCOLELLA, C. O.; ANNO, R.; HALPERT, R.; SPIDLEN, J.; SNYDER-CAPPIONE, J. E. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large

datasets. **Nature Communications**, n. 10, 2019. Disponível em: <https://www.nature.com/articles/s41467-019-13055-y.pdf>. Acesso em: 15 mar. 2025.

BERNARD, S.; MOONEY, A. Metade das maiores cidades do mundo estão ficando mais chuvosas, diz pesquisa. **Folha de S. Paulo**, 15 mar. 2025. Disponível em: <https://www1.folha.uol.com.br/ambiente/2025/03/metade-das-maiores-cidades-do-mundo-estao-ficando-mais-chuvosas-diz-pesquisa.shtml>. Acesso em: 16 mar. 2025.

BERNSTEIN, P. **Machine Learning**: architecture in the age of artificial intelligence. London: RIBA Publishing, 2022.

BIERNATH, A. Por que chuvas em São Paulo têm provocado tantos estragos? **Folha de S. Paulo**, 13 mar. 2025. Disponível em: <https://www1.folha.uol.com.br/cotidiano/2025/03/por-que-chuvas-em-sao-paulo-tem-provocado-tantos-estragos.shtml>. Acesso em: 15 mar. 2025.

BODT, C.; MULDERS, D.; VERLEYSEN, M.; LEE, J. A. Perplexity-free t-SNE and twice Student tt-SNE. **ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning**, Bruges (Belgium), 2018. Disponível em: <https://www.esann.org/sites/default/files/proceedings/legacy/es2018-185.pdf>. Acesso em: 15 mar. 2025.

CAMPO, M. del. **Neural architecture**: design and artificial intelligence. Novato, CA: ORO Editions, 2022.

CASTELANI, C. Adaptação a eventos extremos é prioridade de força-tarefa do G20 para o clima. **Folha de S. Paulo**, 9 mai. 2024. Disponível em: <https://www1.folha.uol.com.br/ambiente/2024/05/adaptacao-a-eventos-extremos-e-prioridade-de-forca-tarefa-do-g20-para-o-clima.shtml>. Acesso em: 15 mar. 2025.

CHAILLOU, S. **Artificial Intelligence and architecture**: from research to practice. Basel: Birkhauser, 2022.

COECKELBERGH, M. **Ética na inteligência artificial**. Rio de Janeiro: Ubu Editora, 2023.

CORNWELL, A. What caused Dubai floods? Experts cite climate change, not cloud seeding. **Reuters – Climate & Energy**, 2024. Disponível em: <https://www.reuters.com/world/middle-east/what-caused-storm-that-brought-dubai-standstill-2024-04-17/>. Acesso em: 15 mar. 2025.

DATOLA, G. Implementing urban resilience in urban planning: A comprehensive framework for urban resilience evaluation. **Sustainable Cities and Society**, v. 98, n. 104821, 2023. Disponível em: <https://doi.org/10.1016/j.scs.2023.104821>. Acesso em: 15 mar. 2025.

EDWARDS, B. **Guía básica de la sostenibilidad**. Barcelona: Editorial Gustavo Gili, 2004.

ERDENESANAA, D. Aumento na temperatura dos oceanos coloca em risco toda a cadeia alimentar marinha. **Folha de S. Paulo**, 10 mar. 2025. Disponível em: <https://www1.folha.uol.com.br/ambiente/2025/03/aumento-na-temperatura-dos-oceanos-coloca-em-risco-toda-a-cadeia-alimentar-marinha.shtml>. Acesso em: 15 mar. 2025.

JACOB, M. Climate misinformation overshadows record floods worldwide. **The Anniston Star**, 11 jun. 2024. Disponível em: https://www.annistonstar.com/news/nation_world/climate-misinformation-overshadows-record-floods-worldwide/article_6ea6d12f-5a29-548d-9b65-ddabad075a1b.html. Acesso em: 15 mar. 2025.

JURGENS, B.; ZIPPLIES, J.; SAUER, C.; KUSYY, O.; OROZALIEV, J.; JORDAN, ULRIKE.; VAJEN, K. Covering District Heating Demand with Waste Heat from Data Centres. **International Journal of Sustainable Energy Planning and Management**, v. 41, 2024. Disponível em: <https://journals.aau.dk/index.php/sepm/article/view/8149>. Acesso em: 15 mar. 2025.

KOSOWATZ, J. Top 10 smart cities in the world. **The American Society of Mechanical Engineers**, 2020. Disponível em: <https://www.asme.org/topics-resources/content/top-10-growing-smart-cities>. Acesso em: 15 mar. 2025.

LAKATOS, E. M.; MARCONI, M. D. A. **Fundamentos de metodologia científica**. São Paulo: Atlas, 2019.

LEACH, N. **Architecture in the age of Artificial Intelligence**: an introduction to AI for architects. New York: Bloomsbury, 2022.

MAES, J. Entenda a relação das mudanças climáticas com o desastre no RS. **Folha de S. Paulo**, 2024. Disponível em: <https://www1.folha.uol.com.br/ambiente/2024/05/entenda-a-relacao-das-mudancas-climaticas-com-o-desastre-no-rs.shtml>. Acesso em: 15 mar. 2025.

MARTÍNEZ-PELÁEZ, R.; OCHOA-BRUST, A.; RIVERA, S.; FÉLIX, V. G.; OSTOS, R.; BRITO, H.; FÉLIX, R. A.; MENA, L. J. Role of Digital Transformation for Achieving Sustainability: Mediated Role of Stakeholders, Key Capabilities, and Technology. **Sustainability**, v. 15, n. 14, 2023. Disponível em: <https://doi.org/10.3390/su151411221>. Acesso em: 15 mar. 2025.

MCDONOUGH, W. William McDonough Delivers Keynote to Aspiring Climate Leaders at the Climatebase Fellowship. **Circular Carbon Economy, Business + Innovation, Circular Economy**, 2024. Disponível em: <https://mcdonough.com/william-mcdonough-delivers-keynote-to-aspiring-climate-leaders-at-the-climatebase-fellowship/>. Acesso em: 15 mar. 2025.

MORIN, E. **Introdução ao pensamento complexo**. Porto Alegre: Meridional / Sulina, 2005.

OLIVEIRA, G. Famílias da primeira região árida do Brasil sofrem com seca agravada por mudança climática. **Folha de S. Paulo**, 2 nov. 2024. Disponível em: <https://www1.folha.uol.com.br/ambiente/2024/11/familias-da-primeira-regiao-arida-do-brasil-sofrem-com-seca-agravada-por-mudanca-climatica.shtml>. Acesso em: 16 mar. 2025.

PREFEITURA DE SÃO SEBASTIÃO. São Sebastião propõe ampliar discussões sobre 'Cidades Inteligentes e Sustentáveis'. **Prefeitura de São Sebastião**, 18 out. 2023. Disponível em: [https://www.saosebastiao.sp.gov.br/noticia.asp?ID=N18102023171940#:~:text=E%2C%20nesse%20sentido%2C%20Onessa%20nova%20abordagem%2C%20ter%C3%ADamos,pe%C3%A7o%20Instituto%20Smart%20City%20Business%20America%20\(SCBA\)](https://www.saosebastiao.sp.gov.br/noticia.asp?ID=N18102023171940#:~:text=E%2C%20nesse%20sentido%2C%20Onessa%20nova%20abordagem%2C%20ter%C3%ADamos,pe%C3%A7o%20Instituto%20Smart%20City%20Business%20America%20(SCBA)). Acesso em: 15 mar. 2025.

RIBEIRO, P. J. G.; GONÇALVES, L. A. P. J. Urban resilience: a conceptual framework. **Sustainable Cities and Society**, v. 50, 101625, 2019. Disponível em: <https://doi.org/10.1016/j.scs.2019.101625>. Acesso em: 15 mar. 2025.

SILVA, L. F. C. da; CÂNDIDO, G. A.; LIMA, E. R. V. de; SILVEIRA, J. A. R. da. Sistema de Indicadores de Sustentabilidade Urbana para Pequenas Cidades: Proposição e aplicação no município do Conde/PB. **Revista Nacional de Gerenciamento de Cidades**, [S. I.], v. 12, n. 87, 2024. DOI: 10.17271/23188472128720245181. Disponível em: https://publicacoes.amigosdanatureza.org.br/index.php/gerenciamento_de_cidades/article/view/5181. Acesso em: 15 mar. 2025.

UNITED NATIONS. **Transforming our world: the 2030 Agenda for sustainable development**. A/RES/70/1, 2015. Disponível em: <https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf>. Acesso em: 15 mar. 2025.

VAN LENGEN, Johan. **Manual do Arquiteto Descalço-2**. Porto Alegre: Bookman Editora, 2021.

ZENIL, H.; KIANI, N. A.; ABRAHÃO, F. S.; TEGNÉR, J. N. Algorithmic Information Dynamics. **Scholarpedia**, v. 15, n. 7, 53143, 2020. Disponível em: <https://doi.org/10.4249/scholarpedia.53143>. Acesso em: 15 mar 2025.

DECLARATIONS

CONTRIBUTION OF EACH AUTHOR

Carlos Quedas Campoy: conception and design of the study; data curation; formal analysis; funding acquisition; methodology; writing – critical review; final review and editing; supervision.

Amanda Maria Rabelo Souza and Cleide Izidoro: investigation; writing – initial draft.

DECLARATION OF CONFLICTS OF INTEREST

We, **Carlos Quedas Campoy, Amanda Maria Rabelo Souza and Cleide Izidoro**, declare that the manuscript entitled "**Artificial intelligence and specialized software: integrating strategies for resilient planning and urban environmental management**".

1. **Financial Relationships:** No financial relationships that could influence the results or interpretation of the work. This work was funded by Instituto Ânima, through a research grant.
2. **Professional Relationships:** No professional relationships that could impact the analysis, interpretation or presentation of the results. No professional relationships relevant to the content of this manuscript have been established.
3. **Personal Conflicts:** There are no personal conflicts of interest related to the content of the manuscript. No personal conflicts related to the content were identified.
