

Challenges of Climate Change Adaptation in Brazilian Municipalities: A Systematic Literature Review**Adriano Felipe Oliveira Lopes**

PhD candidate, PPGAU, UFES, Brasil

adriano.f.lopes@edu.ufes.br

ORCID 0000-0002-0905-1723

Edna Aparecida Nico Rodrigues

Professor, PPGAU, UFES, Brasil

edna.rodrigues@ufes.br

ORCID 0000-0002-0342-1527

Submissão: 05/10/2025

Aceite: 02/12/2025

LOPES, Adriano Felipe Oliveira; RODRIGUES, Edna Aparecida Nico. Desafios da Adaptação às Mudanças Climáticas nos Municípios Brasileiros: Uma Revisão Sistemática de Literatura. **Revista Nacional de Gerenciamento de Cidades**, [S. I.], v. 13, n. 90, p. e2517, 2025. DOI: [10.17271/23188472139020256191](https://doi.org/10.17271/23188472139020256191).

Disponível

em: https://publicacoes.amigosdanatureza.org.br/index.php/gerenciamento_de_cidades/article/view/6191.Licença de Atribuição CC BY do Creative Commons <https://creativecommons.org/licenses/by/4.0/>

Desafios da Adaptação às Mudanças Climáticas nos Municípios Brasileiros: Uma Revisão Sistemática de Literatura

RESUMO

Objetivo – Identificar desafios dos municípios brasileiros na implementação de ações de adaptação climática.

Metodologia – Revisão sistemática de 77 artigos (2014–2024) nas bases ScienceDirect, Scopus e Web of Science.

Originalidade/relevância – Preenche lacuna sobre implementação de políticas municipais de adaptação climática no Brasil.

Resultados – Dos 77 artigos analisados, envolvendo 309 pesquisadores, predominam estudos de caso (39%) e métodos quantitativos, concentrados em São Paulo e Rio de Janeiro, evidenciando desafios na integração entre políticas urbanas e climáticas.

Contribuições teóricas/metodológicas – Revela fragmentação científica e concentração regional da pesquisa.

Contribuições sociais e ambientais – Demonstra desconexão entre políticas públicas e demandas locais. Indica fragilidade na governança climática municipal e necessidade de superar desigualdades regionais técnico-financeiras.

PALAVRAS-CHAVE: Mudanças climáticas. Governança climática. Resiliência urbana.

Challenges of Climate Change Adaptation in Brazilian Municipalities: A Systematic Literature Review

ABSTRACT

Objective – To identify the challenges faced by Brazilian municipalities in the implementation of climate adaptation actions.

Methodology – Systematic review of 77 articles (2014–2024) from the databases ScienceDirect, Scopus and Web of Science.

Originality/relevance – Fills a gap regarding the implementation of municipal climate adaptation policies in Brazil.

Results – Among the 77 articles analysed, involving 309 researchers, case studies (39%) and quantitative methods prevail, with a focus on São Paulo and Rio de Janeiro, highlighting challenges in integrating urban and climate policies.

Theoretical/methodological contributions – Reveals scientific fragmentation and regional concentration of research.

Social and environmental contributions – Demonstrates a disconnect between public policies and local demands. Indicates weaknesses in municipal climate governance and the need to overcome regional technical and financial inequalities.

KEYWORDS: Climate change. Climate governance. Urban resilience.

Desafíos de la Adaptación al Cambio Climático en los Municipios Brasileños: Una Revisión Sistemática de la Literatura Article title in Spanish

RESUMEN

Objetivo – Identificar los desafíos que enfrentan los municipios brasileños en la implementación de acciones de adaptación climática.

Metodología – Revisión sistemática de 77 artículos (2014–2024) en las bases ScienceDirect, Scopus y Web of Science.

Originalidad/relevancia – Llena una brecha respecto a la implementación de políticas municipales de adaptación climática en Brasil.

Resultados – De los 77 artículos analizados, que involucraron a 309 investigadores, predominan los estudios de caso (39%) y los métodos cuantitativos, concentrados en São Paulo y Río de Janeiro, poniendo en evidencia los desafíos para integrar las políticas urbanas y climáticas.

Contribuciones teóricas/metodológicas – Revela la fragmentación científica y la concentración regional de la investigación.

Contribuciones sociales y ambientales – Demuestra la desconexión entre las políticas públicas y las demandas locales. Indica la fragilidad de la gobernanza climática municipal y la necesidad de superar desigualdades técnicas y financieras regionales.

PALABRAS CLAVE: Cambio climático. Gobernanza climática. Resiliencia urbana.

1 INTRODUCTION

Climate change is a global challenge that represents serious threats, making it crucial for the municipalities to implement urban planning that incorporates mitigation and resilience measures for this changing reality. A complex interaction between socio-economic, environmental and political factors influences urban vulnerability to the impact of extreme weather events, especially in Brazil where many urban areas are characterized by inadequate habitation and infrastructure, increasing their risk of exposure.

The Brazilian federal government allocated an average of only 0.11% of national gross domestic product and 0.26% of the total annual expenditure to the environmental sector between 2001 and 2022 - low rates compared to other Latin American countries (Viana et al., 2020; Viana, 2024). These numbers demonstrate the low budget priority given to environmental policies. Additionally, the recent disasters, such as those faced by the states of Rio Grande do Sul and Espírito Santo - which left behind thousands of people displaced and cities entirely submerged - reinforce the urgent need for Brazil to increase its investments in the prevention of and adaptation to climate change.

Developing countries' quick urban expansion, determined by political and economic dynamics, has led to the establishment of informal settlements, in which access to the most basic services - such as water, sewage and electricity - is often inadequate (Mesquita; Almeida, 2024; Bezerra; Bobyleva; Mello, 2025). These settlements, in which around a third of the world's population resides - approximately 850 million people - are particularly vulnerable due to their location in sensitive ecological areas (Vasconcelos, 2024). As a result, they are especially susceptible to the impacts of extreme weather events, such as floods, landslides and heat waves (Rogers, 1997; James, 2023; Dodman et al., 2023).

In Brazilian cities, the climate change adaptation agenda is still in its infancy. In 2021, just seven - Salvador (BA), São Paulo (SP), Rio de Janeiro (RJ), Curitiba (PR), Fortaleza (CE), Belo Horizonte (MG) and Recife (PE) - of the 27 state capitals, presented climate change action plans (Barbi; Rei, 2021; Espíndola; Ribeiro, 2020). All of these municipalities also have local climate committees and are part of at least one of the main transnational networks of municipalities (TMN), which are essential for this issue to be placed on the local political agenda and strengthening climate governance in local governments (Barbi; Rei, 2021). By 2024, this number had risen to 12, including the municipalities of Teresina (PI), João Pessoa (PB), Brasília (DF), Florianópolis (SC) and Rio Branco (AC) (IJSN, 2024).

In this scenario, little articulation is observed between municipal master plans and climate action plans, when existing, revealing problems in the implementation of adaptive measures (Espíndola; Ribeiro, 2020; Carvalho et al., 2020). Masiero, Menegaldo and Tavares (2023) and Marques et al. (2023) have identified, respectively, discrepancies between proposals and the actual implementation of measures to mitigate the impacts of climate change, as well as gaps in master plans that require the creation of specific plans for climate action - even if they contain environmental guidelines. Furthermore, the governments have adopted a reactionary stance in the face of these challenges (Teixeira; Pessoa, 2021), neglecting long-term planning and the effective incorporation of climate concerns.

In the light of the aforementioned, the aim of this article is to provide, based on a systematic literature review and bibliometric analysis, an overview of the challenges faced by Brazilian municipalities in the implementation of actions for climate change adaptation.

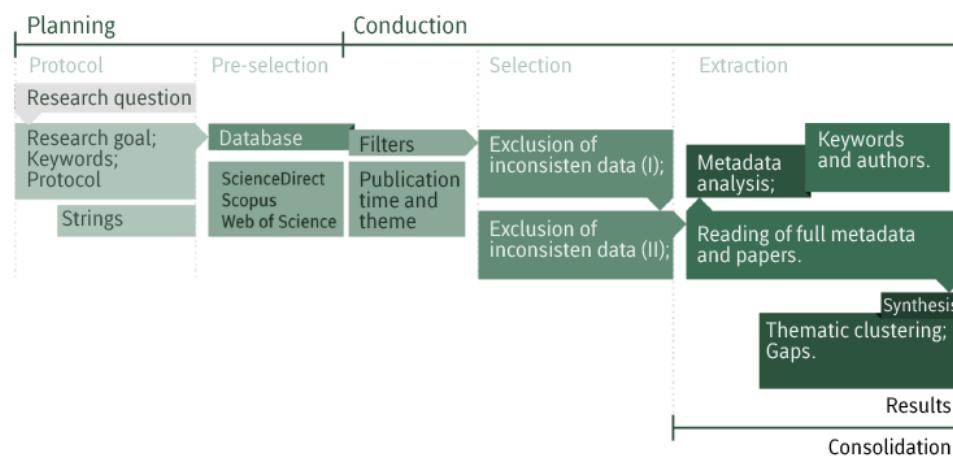
2 METHODOLOGY

A qualitative and quantitative theoretical study was conducted using a systematic literature review (SLR). SLRs use explicit methods to analyze primary studies in to address clearly formulated research queries (Neves *et al.*, 2017; Galvão; Ricarte, 2019). For this study, a method was adopted based on the proposal by Dresch, Lacerda e Antunes (2015), correlating it to the approaches used by some researchers to conduct SLR (Bavaresco *et al.*, 2021; Nico-Rodrigues; Bussolotti, 2020; Pellegrini *et al.*, 2023; Salvalaio *et al.*, 2023; Lucarelli; Oliveira; Carlo, 2023).

An RSL characterization must be pragmatic and precise, differing from a narrative review due to its objective approach (Dresche; Lacerda; Antunes, 2015). It involves stages such as a set protocol, definition of inclusion and exclusion criteria, and data extraction (Junior; Oliveira; Zorral, 2021). Its aim is to highlight the state of the art by examining general principles at a conceptual level of abstraction (Lopes; Silva, 2019). In addition, the RSL must be coherent in order to provide a critical reading of a specific topic, and thus identify gaps related to on the issue in question (Neves *et al.*, 2017).

Morandie Camargo (2015) have proposed a protocol for developing SLR. It defines the context, theoretical field, problem, type, eligibility criteria, databases and research horizon based on a main theme. Following this approach, adaptation practices in Brazilian cities were investigated in the context of climate change, with the aim of establishing a state of the art in the country's climate governance. To achieve this, a ten-year horizon was defined for the collection of papers in the ScienceDirect, Scopus and Web of Science databases, restricting itself to cases applied to urban areas in Brazil.

Board 1 - Protocol applied to RSL adopted in this research based on the structure suggested by Morandi and Camargo (2015).


Main theme	Adaptation and resilience of Brazilian cities to the climate change
Context	In Brazil, the climate change adaptation agenda is recent. The action plans are limited to few metropolitan area.
Problem	How the climatic governance can be properly implemented towards the resilience of Brazilian cities to the climate change?
Databases	ScienceDirect; Scopus; Web of Science
Theoretical field	Urban planning; Climate governance
Horizon	2014-2024
Adherence	Urbanized area approach; Research applied to Brazilian municipalities.

Source: the authors.

SLR therefore consists of mapping primary studies that address a specific research topic, followed by a critical evaluation and arrangement of these studies in order to identify patterns and gaps to be observed in its synthesis (Neves *et al.*, 2017; Lopes; Silva, 2019; Lucarelli;

Oliveira; Carlo, 2023). Its development is defined by three stages: planning, conduction and consolidation. The planning stage consists in the definition of the databases where these primary studies are collected based on the relationship between a set of strings (search terms), and their scope through the application of a research protocol. The conduction stage checks which papers meet the inclusion and exclusion criteria defined for the sample that will comprise the review. Finally, the consolidation stage consists of carrying out a bibliometric analysis to quantify the most frequent keywords and relevant authors in the sample using the VosViewer software (version 1.6.20) and summarizing the results.

Figure 1 – Flowchart with structure for developing the review adopted in this research.
pesquisa.

Source: the authors.

5

The search terms used to compose the syntax were: climate change, urban, adaptation, resilient, resilience, Brazil and Brazilian. To avoid superficial and generic output data, the search key “climate change” was grouped in parentheses, so that its composing terms were not searched separately. The relationship between the terms resilient, resilience and adaptation and the terms Brazil and Brazilian was established using the Boolean operator OR, so that only one of them was considered in the search syntax at a time. Thus, the search keys are connected by the Boolean operator AND, resulting in the following search syntax: “climate change” AND (resilient OR resilience OR adaptation) AND (Brazil OR Brazilian).

In both databases used in this research, the syntax for searching by topic was used. In this way, the occurrence of the strings was detected only in the titles, keywords or abstracts. Next, the resulting number of papers was filtered by horizon, restricting them to those published between 2014 and 2024 and framed within the areas of study: Engineering, Environmental Sciences, Energy and Social Sciences. **Erro! Fonte de referência não encontrada.** Table 1 below shows the number of papers pre-selected in the databases according to the filters adopted in each one.

Table 1 – Search syntax and number of articles found by database according to period, type and research area.

Sintaxe	Base	Horizonte e tipo	Áreas de pesquisas	Qtd.
TS="climate change" AND urban AND (resilient OR resilience OR adaptation) AND (Brazil OR Brazilian OR Brasil)	Science Direct	the entire period (2017-2024), research and review articles ¹	Environmental Science, Social Sciences, Energy, Engineering	21
	Web of Science	2014-2024, research and review articles	Environmental Sciences, Environmental Studies, Green Sustainable Science Technology, Engineering	73
	Scopus	2014-2024, research and review articles	Environmental, Urban Studies, Engineering Civil, Construction, Building Technology	105
				133*

Source: the authors.

* duplicated source were excluded

The bibliographic management of the papers retrieved from the databases and the extraction of their metadata was performed using the Zotero software (version 7.0.2), also used to exclude duplicates or references with inconsistent data. Then, by cross-referencing the metadata of the pre-selected papers, a spreadsheet was drawn up, arranging the papers by type of approach, main theme, application in Brazilian municipalities, synthesis and method, with the aim of relating them and building a state of the art on the established issue.

Studies applied to specific Brazilian municipalities were within the scope of the research, excluding those that mentioned only the state or geographical region. After defining the population of adherent articles, a quantitative analysis was carried out to identify the number of productions by approach, year, state and theme.

6

Figure 2 - Organization of the pre-selected articles based on their metadata.

Metadata	Title Year Authorship	Abstract Keywords	Abstract Results Method	City	Synthesis	Adherent
	Paper					
AUTHOR (YEAR)	Qualitative Quantitative Quali- quantitative Exploratory	Climate governance Climate change perception Resilience Mitigation and adaptation Socioeconomi c vulnerability Nature-based solutions	Municipality (UF)			[] Adherent to the research scope [] Not adherent to the research scope

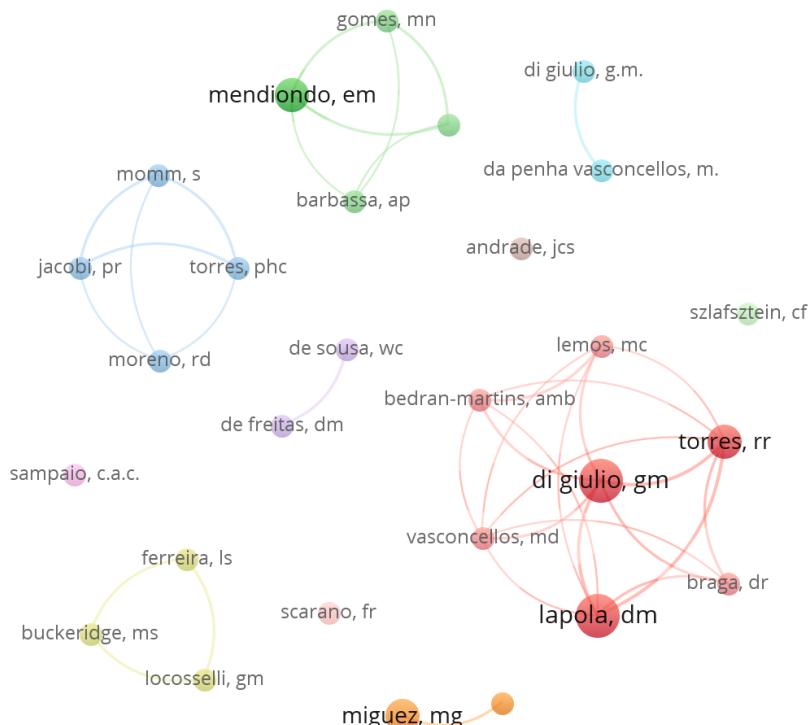
Source: the authors.

1 For this database, restricted to the research areas indicated, only articles within the 2017 to 2024 timeframe were identified.

3 RESULTS

Besides the number of articles identified in the database which complied with the scope of the research, the results show the main topics covered, discussed subsequently, and others which were not properly explored, identifying possible research gaps. Of a total of 133 articles found in the set of databases considered, 16 presented inconsistent data, and only 77 were selected because they met the scope of the research, published by 309 researchers.

3.1 Bibliometric analysis

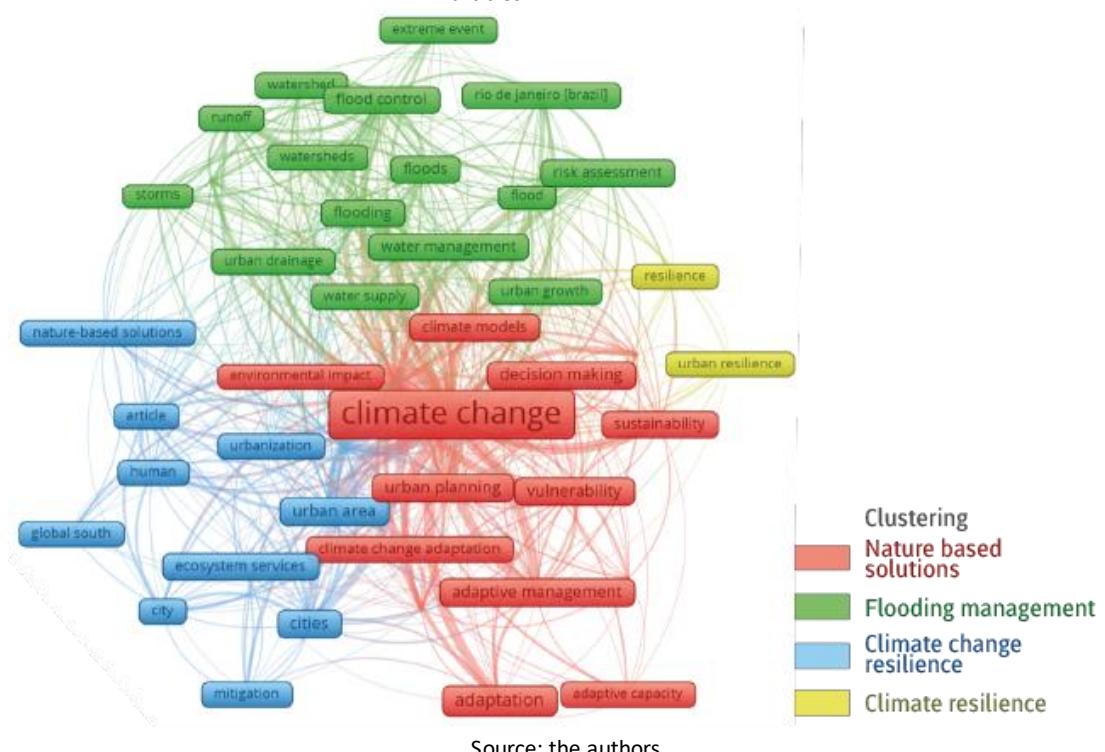

3.1.1 Main keywords and authors

The most important authors and frequently occurring keywords in the publications were considered in the pre-selection phase. A maximum of fifteen authors per document and a minimum of two articles per author were adopted. As for the analysis of the occurrence of keywords, a minimum of five occurrences was established for each keyword.

The names represented by larger circles indicate a higher occurrence frequency in relation to the occurrence than the others, while the lines illustrate the networks of authors and co-authors. Of the 670 authors responsible for the publications, only 38 have two or more records, and only 6 have published three or more times. The lack of connections between some authors suggests research in different or unrelated areas.

7

Figure 3 - Co-authorship analysis.



Source: the authors

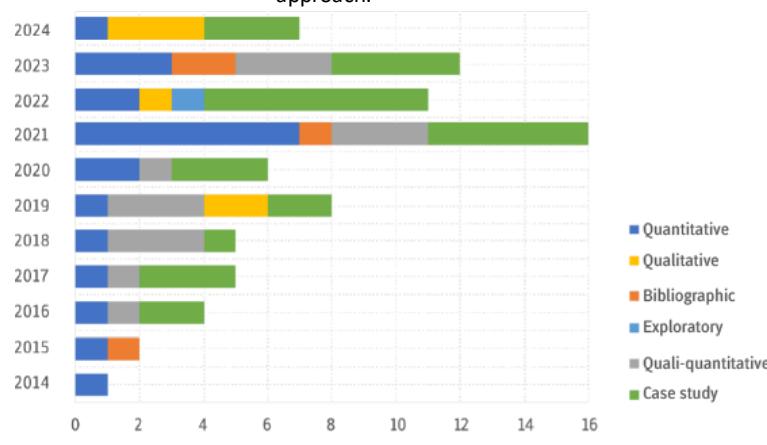
e2517

From the 992 keywords present in the sample, only 45 had at least five occurrences, distributed in four thematic groupings: "Adaptation to climate change", "Flood management", "Nature-based solutions" and "Resilience". It was noted, however, that the five keywords with the highest number of instances - "climate change", "Brazil", "Sao Paulo", "urban area" and "adaptive management" - were not equivalent to the terms used to formulate the search syntax adopted in the research.

Figure 4 - Keywords with the highest occurrence in the sample of pre-selected articles.

3.1.2 Artigos aderentes ao escopo da pesquisa

Out of the 133 articles retrieved in the pre-selection stage, 16 items were excluded due to inconsistent or irrelevant metadata. It was found that 77 articles were in line with the scope of the review, presented in the following table by topic classification.


Table 1 - Thematic grouping of articles adhering to the scope of the review.

Papers complying with the scope of the research	Topics	Qty.
(Obraczka <i>et al.</i> , 2017; Di Giulio <i>et al.</i> , 2019; Coates, 2021; Leao; Andrade; Nascimento, 2021; Mendes, 2022; Ferreira, M. <i>et al.</i> , 2023; Schmidt <i>et al.</i> , 2024)	Climate governance	7
(Moreno; Braga; Xavier, 2021; Lampis <i>et al.</i> , 2022; Rodrigues; Molina Junior; Canteras, 2023; Ferreira, M. L. <i>et al.</i> , 2023; Torres, P. H. C. <i>et al.</i> , 2023; Raimondi <i>et al.</i> , 2023; Lisboa <i>et al.</i> , 2024)	Green infrastructure and nature-based solutions	7
(Petit-Boix <i>et al.</i> , 2015; Moura; Pellegrino; Martins, 2016; Miguez; Veról, 2017; Fava <i>et al.</i> , 2022; de Saboia <i>et al.</i> , 2020; Francisco <i>et al.</i> , 2023)	Flood management	6
(Zanetti; de Sousa; De Freitas, 2016; de Andrade; Szlafsztein, 2018; Freitas; D'Avignon; Castro, 2019; Lapolá <i>et al.</i> , 2019; de Oliveira <i>et al.</i> , 2020; Cavalcanti <i>et al.</i> , 2022a; Mello <i>et al.</i> , 2023)	Climate change perception and socio-economic vulnerability	7
(Duarte <i>et al.</i> , 2014; Scarano; Ceotto, 2015; Bacalhau; Neto; Montenegro, 2016; Marengo <i>et al.</i> , 2017; Sant'Anna, 2018; Simões <i>et al.</i> , 2017; Mansur <i>et al.</i> , 2018; Locosselli <i>et al.</i> , 2019; Santos, A. <i>et al.</i> , 2020; Szlafsztein; de Araújo, 2021; Fitchett; Raik, 2021; Barbieri; Guedes; dos Santos, 2021; Chaves <i>et al.</i> , 2021; Costa <i>et al.</i> , 2021; Feitosa <i>et al.</i> , 2021; Roca-Barceló, Aina <i>et al.</i> , 2022; de Oliveira Rolo <i>et al.</i> , 2022; Araújo <i>et al.</i> , 2024; Herrera-Franco <i>et al.</i> , 2024)	Adaptation and mitigation	24
(Young, 2016; Paterson <i>et al.</i> , 2017; Washburn, 2018; Collazo <i>et al.</i> , 2019; Rezende <i>et al.</i> , 2019; Bertilsson <i>et al.</i> , 2019; Barata <i>et al.</i> , 2020; de Moura; Carvalho, 2020; Santos, T. <i>et al.</i> , 2020; Okumura <i>et al.</i> , 2021; Nieto; Cubillos; Barrios, 2021; de Carvalho; lensen; dos Santos, 2021; Cerbaro <i>et al.</i> , 2022; de Magalhães <i>et al.</i> , 2022; Ferranti; Oberling; Quinn, 2022; Rodrigues Prado <i>et al.</i> , 2022; Silva <i>et al.</i> , 2022; Guzmán; Mohor; Mendiondo, 2023; Krelling <i>et al.</i> , 2023; Oliveira; Fath, 2023; Pereira; Miranda, 2023; Pardal; Christofolletti; Martinez, 2024; Rodrigues <i>et al.</i> , 2023; de Castro; Alvim, 2024; Locosselli <i>et al.</i> , 2024)	Climate resilience	26
Source: the authors.		77

9

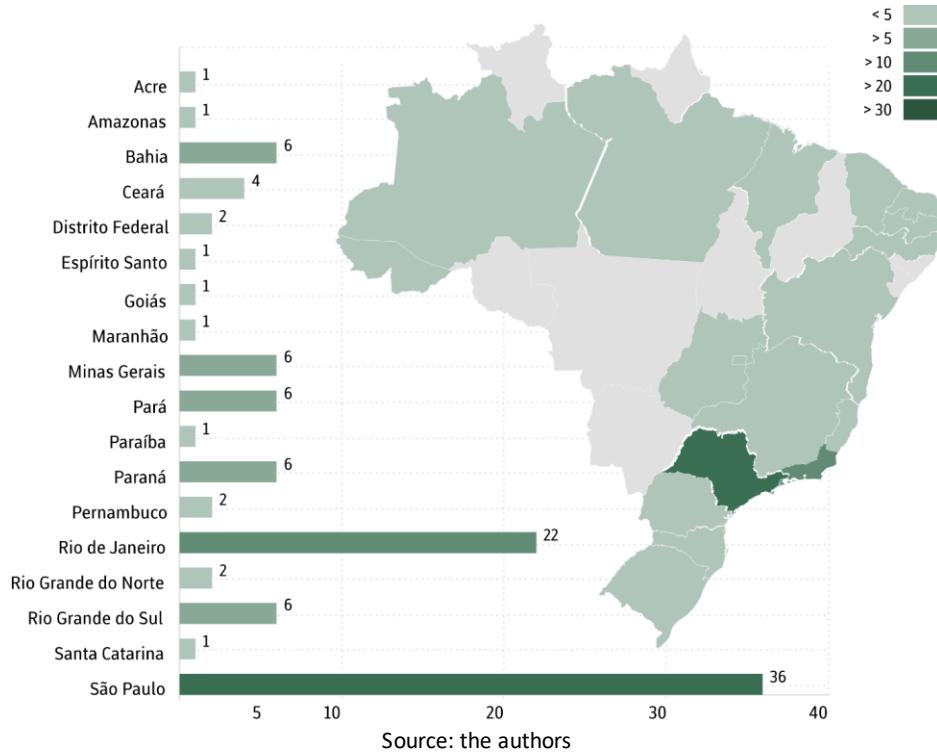

When analyzing the distribution of publications complying with the scope of the research over the last decade, we can see an increase in the number of publications until 2021 (Figure 5 **Erro! Fonte de referência não encontrada.**). In the following years, there has been a decrease in the publication volume, although there is a trend of growth. In this scenario, there is a predominance of publications involving case studies, representing 39% of the total, followed by 27% of publications of a qualitative nature. In addition, there is a significant discrepancy between the number of studies applied to municipalities in the states of São Paulo and Rio de Janeiro compared to the other regions of the country (Figure 6).

Figure 5 - Number of articles published per year, respectively distributed by research approach.

Source: the authors

Figure 1 - Articles distributed by application context.

10

3.2 Discussão dos resultados

This section discusses and summarizes the papers adhering to the research by thematic grouping. For each group, we sought to identify common trends among the research and, consequently, knowledge gaps that could provide a basis for future research and guidelines for more effective public policies.

3.2.1 Resilience

The selected papers address various aspects of resilience and climate change adaptation in Brazilian cities. Bertilsson et al. (2019), Rezende et al. (2019) e Okumura et al (2021) have proposed indicators and methods to assess and improve flood resilience in Rio de Janeiro. Similarly, Iensen et al. (2021) and Cerbaro et al. (2022) analyze flood vulnerability in Belém and Rio Branco, respectively, identifying significant variations between rich and poor areas. Fernandez-Guzman et al. (2023) examines drought resilience in São Paulo, evaluating the costs of interrupting water supply.

Another research group focuses on resilient design related to nature-based solutions. Rodrigues et al. (2023) investigate urban furniture solutions for shading in Belo Horizonte, aimed at mitigating heat islands. Boom et al. (2024) examine the use of drought-resistant species in São Paulo. In the field of thermal resilience in buildings, Hong et al. (2023) proposed a framework

for evaluation in São Luís, while Barrios *et al.* (2021) demonstrate the effectiveness of compressed earth blocks (CEB) in social housing in specific climates.

A number of studies focus on the adoption of integrated planning to improve urban resilience. Ferranti *et al.* (2022) and Santos *et al.* (2020) examined the urban transport resilience in Rio de Janeiro, identifying greater robustness in central areas and vulnerability linked to socioeconomic factors - which underscores the need for integration in urban planning. Young (2016) and Pardal *et al.* (2024) emphasize the importance of integrated planning and the incorporation of different urban typologies to mitigate vulnerabilities and disaster risks in São Paulo's coastal regions.

Finally, some studies emphasize the importance of integrated and holistic approaches. Silva *et al.* (2022) highlight the need to integrate social and environmental actions in Salvador, a crucial aspect in poverty and inequality contexts. Fath and Oliveira (2023) present a comparative index of urban resilience with 29 indicators, highlighting the role of cultural identity in cities. Paterson *et al.* (2017) examined the adaptive capacity of smaller coastal cities, highlighting the need to redistribute decision-making power. These studies converge in pointing out the importance of considering multiple factors and stakeholders when planning for urban resilience in the face of climate change.

3.2.2 Mitigation and Adaptation

Some studies in this theoretical framework have highlighted climate vulnerability and the importance of ecosystem-based adaptations. Ceotto and Scarano (2023), in their observation of the vulnerability of biodiversity in the Atlantic Forest due to climate, and Rolo *et al.* (2022), in their investigation of the perception of ecosystem services in São Paulo, emphasized the need for ecosystem-based adaptations, underlining the importance of increasing local resilience through practices that improve public management and urban resilience. Bacalhau *et al.* (2016) also contributed by proposing strategies to mitigate water scarcity in the Metropolitan Region of Recife through adaptive management, demonstrating the effectiveness of ecosystem-based approaches in different contexts.

Some other studies have shown the importance of vegetation in climate mitigation. Duarte *et al.* (2014) and Locosselli *et al.* (2019) analyzed, respectively, the influence of vegetation on improving the microclimate in dense built-up areas and the impact of air pollution on the growth of urban trees in São Paulo. Roca-Barceló *et al.* (2022), on the other hand, analyzed mortality associated with high temperatures, identifying trends in minimum temperatures and cumulative risk, underscoring the need for specific interventions.

A third set of papers addresses community integration and participation in adaptation strategies. Herrera-Franco (2024) identifies strategies that balance economic growth and environmental impact by promoting community participation in adaptive actions. Marengo *et al.* (2017), in the METROPOLE project, used a participatory approach to evaluate sea level rise adaptation in Santos, identifying community adaptation preferences. Araujo *et al.* (2024) highlighted the precarious housing situation in João Pessoa, stating that over half of the habitations are located in disaster-prone areas, proposing interventions to improve the resilience of these areas and, consequently, their social and environmental conditions.

3.2.3 Green infrastructures and nature-based solutions

In this context of green infrastructure and nature-based solutions, several studies have highlighted innovative approaches to improving urban resilience and environmental management. Ferreira *et al.* (2023) research assessed the expansion of urban parks in São Paulo, indicating a significant increase in protected areas, despite socio-spatial segregation. Braga, Moreno and Xavier (2021) explored the implementation of a green corridor in the São Paulo Metropolitan Region through a qualitative-quantitative approach, emphasizing the significance of including green infrastructure in order to reduce social inequality and safeguard of the Atlantic Forest.

Lisboa *et al.* (2024) research analyzes the flora of urban squares in Ceará, underlining its importance in carbon capture and evidencing squares' potential in mitigating greenhouse gas (GHG) emissions. Similarly, Rodrigues, Molina Junior and Canteras (2023) examine the implementation of green infrastructure in a Fortaleza neighborhood, identifying solutions such as rain gardens, which provide environmental benefits and essential ecosystem services.

On the other hand, studies such as Lampis' (2022) examine the ecological repair in Latin America, demonstrating that local initiatives in low-income areas promote nature-based urban adaptations, contributing to social justice and resilience. Torres *et al.* (2023) discussed risks related to nature-based solutions, drawing attention to the importance of planning in order to mitigate the risk of intensifying social inequalities. Raimondi *et al.* (2023) evaluated the efficiency of adopting permeable sidewalks under urban trees to improve stormwater management and mitigate urban drainage problems.

12

3.2.4 Flood management, socioeconomic vulnerability and climate change perception

In relation to the flood management, Petit-Boix (2015) evaluated a system of infiltration in São Carlos as a feasible alternative for water runoff reduction of up to 95%, highlighting its effectiveness compared to traditional infrastructures. Saboia *et al.* (2020) addressed the uncertainties in forecasting precipitation and proposed a decision tool to improve the design of drainage systems in Fortaleza. Miguez and Veról (2015) developed a Flood Resilience Index that supports the combination of sustainable drainage and river restoration, outperforming a reservoir alternative.

Also in this area, Moura *et al.* (2016) explored rainwater management techniques in São Paulo, showing the effectiveness of permeable sidewalks, which are capable of retaining 41% of the volume of a reservoir. In São Carlos, the research by Fava *et al.* (2022) shows that low-impact practices improved the resilience of the Gregório basin in São Carlos, SP, but with limitations during intense storms. Francisco *et al.* (2023) highlighted challenges to improving urban drainage systems in Brazil, underlining the need for public policies to overcome inadequate infrastructure and lack of investment.

In relation to climate change perception, Oliveira *et al.* (2020) pointed to the population's recognition of the increase in temperature and precipitation in Belém, attributing these changes to the urban development model. Environmental awareness is crucial to guide

actions to mitigate these effects. Zanetti and Júnior (2016) developed a Socio-environmental Vulnerability Index for coastal areas, revealing that 70% of the municipality of Santos (SP) is highly vulnerable to flooding and rising sea levels. Lapola and Braga (2019) analyzed vulnerability to heat stress in six Brazilian capitals, with Manaus and Natal showing the highest indices, highlighting the need for effective risk communication and increased urban vegetation.

Freitas, D'Avignon and Castro (2019) identified a correlation between socio-spatial segregation and vulnerability to extreme weather events, highlighting the need for urban policies in Rio de Janeiro. According to Mello *et al.* (2018), more than 80% of the area of the municipality of Santarém is highly vulnerable to flooding, highlighting the need for structural and social interventions due to its low adaptive capacity. Mello *et al.* (2023) pointed out the high socio-environmental vulnerability to landslides in Brusque, establishing the relationship between environmental susceptibility and housing in risk areas. Cavalcanti *et al.* (2022) analyzed how social movements in Natal and São Paulo use vacant buildings in central areas to claim the right to the city and housing in the face of climate risks.

3.2.5 Climate governance

Regarding climate governance, several studies have highlighted its importance for municipalities to adapt to climate change. Mendes (2022) and Di Giulio *et al.* (2019) analyzed, respectively, urban transformation in Rio de Janeiro, where the climate agenda privileges financial interests over social well-being, and in São Paulo municipalities, highlighting the need for effective governance strategies and more transparency in data collection. Similarly, Schmidt *et al.* (2024) state that the limitations to climate action are due to a lack of political capacity and resources, highlighting the inadequate use of data and the need for a more holistic approach. Nascimento *et al.* (2021) examined how urbanization in Recife amplifies climate risks, highlighting governance and financing as essential for climate action.

Obraczka *et al.* (2017), Ferreira *et al.* (2023), and Coates (2021) emphasize the importance of transparency and public participation in environmental governance. Obraczka *et al.* (2017) compare coastal management practices in Rio de Janeiro, illustrating the effectiveness of a national model that integrates stakeholders in decision-making. Coates (2021) has examined how disaster awareness in the state of Rio de Janeiro depends on the political context, revealing how effectiveness in risk reduction is affected by governance structures. Ferreira *et al.* (2023) investigated environmental policies in 78 municipalities in the Green Belt Biosphere Reserve in the state of São Paulo, highlighting the positive correlation between the Human Development Index (HDI) and environmental policies, as well as the importance of municipal management for the sustainable development of the region.

3.3 Gaps

Among the common gaps across all the thematic groups is the need to establish accurate indices to better assess the efficiency of certain adopted adaptation strategies, especially in vulnerable communities, integrating socio-economic and cultural factors in policy

implementation, as a function of their risks. In addition, there is a demand for studies, with long-term projections, about the impacts of urban vegetation on the microclimate and public health.

Similarly, in the context of flood management and green infrastructure, there is a need to better understand social and environmental interactions in informal urban areas. There is also a need to integrate local data into predictive models, assessing the impact and feasibility of the adoption of adaptive approaches.

Finally, studies on climate governance and urban resilience indicate the need to evaluate the effectiveness of participatory approaches in climate policies. In this context, there is also a demand for investigations into community participation in the implementation of resilience actions and projects, as well as the effectiveness of nature-based solutions in different Brazilian urban contexts.

4 Conclusão

The review showed a growing approach to the subject, in recognition of the challenges that cities have faced in recent years. Broadly speaking, there is a greater emphasis on the relevance of adopting nature-based solutions and inclusive policies. However, the absence of more effective methods for evaluating the effectiveness of these strategies and integrating socio-economic factors represents a significant gap.

In order to make progress in this field, it is crucial to develop research that evaluates the long-term impact of adaptive measures, taking into account local specificities and socio-economic inequalities. In addition, it is necessary to improve community participation in the formulation and implementation of climate policies, ensuring effective and equitable solutions for all segments of the Brazilian urban population.

14

5 Referências

ARAÚJO, R. R.; PEREZ, L. P.; MORAIS, M. T.; ANJOS, K. L. Climate emergency and urban housing precariousness: guidelines for climate adaptation in the São José neighborhood, João Pessoa - PB. *DESENVOLVIMENTO E MEIO AMBIENTE*, v. 63, p. 412–435, 2024. Disponível em: <https://www.scopus.com/record/display.uri?eid=2-s2.0-85204296305&doi=10.5380%2fdma.v63i0.87786&origin=inward&txGid=3c22ac4622d0ad1cbaeed5bf4091c73b>. Acesso em: 29 abr. 2025

BACALHAU, J. R.; NETO, A. R.; MONTENEGRO, S. M. G. L. Water supply reservoir operation in relation to climate variability: Pirapama river basin (pernambuco-Brazil). *Journal of Urban and Environmental Engineering*, [s. l.], v. 10, n. 2, p. 279–287, 2016. Disponível em: <https://www.scopus.com/record/display.uri?eid=2-s2.0-85018990045&doi=10.4090%2fjuee.2016.v10n2.279287&origin=inward&txGid=3c5e2a7351c2efefa86f9e3f4cffc051>. Acesso em: 28 abr. 2025.

BARBI, F.; REI, F. C. F. Mudanças climáticas e agenda de adaptação nas cidades brasileiras. *Revista Catalana de Direito Ambiental*, v. 12, n. 1, p. 1–34, 2021. Disponível em: <https://raco.cat/index.php/rcda/article/view/393350>. Acesso em: 28 abr. 2025.

BAVARESCO, M. V., CUCHIVAGUE, H. Y. O., SCHINAZI, A.; GHISI, E. Aspectos impactantes no desempenho energético de habitações de interesse social brasileiras: revisão de literatura. *Ambiente Construído*, v. 21, n. 1, p. 263–292, 2021. Disponível: <https://www.scielo.br/j/ac/a/MCZzz7WysfwRdfyN6YzimLJ/?lang=pt>. Acesso em: 28 abr. 2025.

BEZERRA, M. C. L.; BOBYLEVA, N.; MELLO, C. M. C. Ocupação de áreas de fragilidade ambiental e riscos à comunidade: critérios mínimos para garantir segurança e salubridade à moradia. **Revista Nacional de Gerenciamento de Cidades**, v. 13, n. 88, 16 ago. 2025. Disponível em: https://publicacoes.amigosdanatureza.org.br/index.php/gerenciamento_de_cidades/article/view/5784. Acesso em: 25.09.2025.

BERTILSSON, L.; K. WIKLUND, I.; TEBALDI, O.M.; REZENDE, A.P. VERÓL, MIGUEZ, M.G. Urban flood resilience – A multi-criteria index to integrate flood resilience into urban planning. **Journal of Hydrology**, v. 573, p. 970–982, 2019. Disponível em: <https://www.scopus.com/record/display.uri?eid=2-s2.0-85049106726&doi=10.1016%2fj.jhydrol.2018.06.052&origin=inward&txGid=c7384d0fd12b8c89499cc837640aae01>. Acesso em: 28 abr. 2025.

CARVALHO, W. K. M. *et al.* Mudanças climáticas na metrópole paulista: uma análise de planos diretores e leis urbanísticas. **Ambiente Construído**, Porto Alegre, v. 20, p. 143–156, 2020. Disponível em: <https://www.scielo.br/j/ac/a/k3FXxzZb9pMZpvpNJDLOFh/?lang=pt>. Acesso em: 28 abr. 2025.

CAVALCANTI, E. R.; BRASIL, A. B.; MORETTI, R. de S.; MORETTI. Social Movements on the Occupation of Urban Voids in Central Areas and the Inclusive Facing of Climate Change: The Cases of São Paulo and Natal. **REVISTA DE DIREITO DA CIDADE-CITY LAW**, v. 14, n. 1, p. 138–169, 2022. Disponível em: <https://www.e-publicacoes.uerj.br/index.php/rdc/article/view/54363>. Acesso em: 28 abr. 2025.

CERBARO, M.; MORSE, S.; MURPHY, R.; MIDDLEMISS, S.; MICHELAKIS, D. Assessing Urban Vulnerability to Flooding: A Framework to Measure Resilience Using Remote Sensing Approaches. **SUSTAINABILITY**, v. 14, n. 4, 2022. Disponível em: <https://www.mdpi.com/2071-1050/14/4/2276>. Acesso em: 28 abr. 2025.

COATES, R. Educational hazards? The politics of disaster risk education in Rio de Janeiro. **DISASTERS**, [s. l.], v. 45, n. 1, p. 86–106, 2021. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1111/dis.12399>. Acesso em: 28 abr. 2025.

15

DI GIULIO, G. *et al.* Bridging the gap between will and action on climate change adaptation in large cities in Brazil. **REGIONAL ENVIRONMENTAL CHANGE**, [s. l.], v. 19, n. 8, p. 2491–2502, 2019. Disponível em: <https://link.springer.com/article/10.1007/s10113-019-01570-z>. Acesso em: 29 abr. 2025.

OLIVEIRA, J. V.; COHEN, J. C. P.; PIMENTEL, M.; TOURINHO, H. L. Z.; LÔBO, M. A.; SODRÉ, G.; ABDALA, A. Urban climate and environmental perception about climate change in Belém, Pará, Brazil. **URBAN CLIMATE**, [s. l.], v. 31, 2020. Disponível: <https://www.sciencedirect.com/science/article/abs/pii/S2212095519302421?via%3Dihub>. Acesso em: 28 abr. 2025.

SABOIA, M. A. M., SOUZA, F. D.; HELFER, F.; ROLIM, L. Z. R. Robust Strategy for Assessing the Costs of Urban Drainage System Designs under Climate Change Scenarios. **JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT**, v. 146, n. 11, 2020. Disponível em: <https://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001281>. Acesso em: 28 abr. 2025.

DODMAN, D. *et al.* Climate change and informal workers: Towards an agenda for research and practice. **Urban Climate**, [s. l.], v. 48, p. 101401, 2023. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2212095522003194>. Acesso em: 28 abr. 2025.

DRESCHE, A.; LACERDA, D. P.; ANTUNES, J. A. V. A. J. A. V. **Systematic Literature Review Method adapted to Design Science Research**. Cham, Heidelberg, New York, Dordrecht, London: Springer, 2015.

DUARTE, D.; SHIZATO, P.; GUSSON, P.; ALVES, C. The impact of vegetation on urban microclimate to counterbalance built density in a subtropical changing climate. In: 30TH INTERNATIONAL PLEA CONFERENCE: SUSTAINABLE HABITAT FOR DEVELOPING SOCIETIES: CHOOSING THE WAY FORWARD - PROCEEDINGS, 2014. **Anais** [...]. [s. l.: s. n.], 2014. p.

57–64. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088356166&partnerID=40&md5=1d4e816e1f5abd916035f11b3341f629>. Acesso em: 28 abr. 2025.

ESPÍNDOLA, I. B.; RIBEIRO, W. C. Cidades e mudanças climáticas: desafios para os planos diretores municipais brasileiros. **Cadernos Metrópole**, São Paulo, v. 22, p. 365–396, 2020. Disponível em: <https://www.scielo.br/j/cm/a/ZY47nWVQJfMfCFcx7Q9hywn/?lang=pt>. Acesso em: 28 abr. 2025.

FAVA, M. C. *et al.* Linking Urban Floods to Citizen Science and Low Impact Development in Poorly Gauged Basins under Climate Changes for Dynamic Resilience Evaluation. **Water (Switzerland)**, v. 14, n. 9, 2022. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130026779&doi=10.3390%2fw14091467&partnerID=40&md5=1dab1864930204a44faa09a2b0a7f149>. Acesso em: 28 abr. 2025.

FERREIRA, M. L.; DALMAS, F. B.; SANTANNA, M.; RODRIGUES, E. A.; SODRÉ, M. G. Sustainable development in São Paulo's Green Belt Biosphere Reserve: between the void of municipal environmental policies and the ecosystem management of the territory. **REVISTA DE GESTÃO AMBIENTAL E SUSTENTABILIDADE-GEAS**, [s. l.], v. 12, n. 1, 2023. Disponível em: <https://dialnet.unirioja.es/servlet/articulo?codigo=10100817>. Acesso em 28 abr. 2025.

FERNANDEZ-GUZMAN, D.; LAVARELLO, R.; YGLESIAS-GONZÁLEZ, M.; HARTINGER, S.; ROJAS-RUEDA, D. A scoping review of the health co-benefits of climate mitigation strategies in South America. **LANCET REGIONAL HEALTH-AMERICAS**, v. 26, 2023. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S2667193X2300176X?via%3Dihub>. Acesso em: 29 abr. 2025.

FERRANTI, E. J. S.; OBERLING, D. F.; QUINN, A. D. Transport resilience to weather and climate: an interdisciplinary view from Rio de Janeiro. **Proceedings of the Institution of Civil Engineers: Urban Design and Planning**, v. 175, n. 3, p. 103–121, 2022. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129175789&doi=10.1680%2fjurdp.21.00006a&partnerID=40&md5=f6de8629e78bccdd62c22ef3a8548265>.

Acesso em: 29 abr. 2025.

16

FREITAS, C.; D'AVIGNON, A.; CASTRO, A. Urban social vulnerability and climate change in Rio de Janeiro city associated with population mobility. **JOURNAL OF ENVIRONMENTAL POLICY & PLANNING**, v. 21, n. 6, p. 797–810, 2019. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074031004&doi=10.1080%2f1523908X.2019.1674135&partnerID=40&md5=240c474b49223bc80f5bd536995f298d>. Acesso em: 29 abr. 2025.

FRANCISCO, T. H. S.; MENEZES, O. V. C.; GUEDES, A. L. A.; MAQUERA, G.; NETO, D. C. V.; LONGO, O. C.; CHINELLI, C. K.; SOARES, C. A. P. The Main Challenges for Improving Urban Drainage Systems from the Perspective of Brazilian Professionals. **INFRASTRUCTURES**, v. 8, n. 1, 2023. Disponível em: <https://www.mdpi.com/2412-3811/8/1/5>. Acesso em: 28 abr. 2025.

GALVÃO, M. C. B.; RICARTE, I. L. M. Revisão sistemática da literatura: Conceituação, produção e publicação. **Logeion: Filosofia da Informação**, Rio de Janeiro, v. 6, n. 1, p. 57–73, 2019. Disponível em: <https://revista.ibict.br/fiinf/article/view/4835>. Acesso em: 28 abr. 2025.

HERRERA-FRANCO, G.; BRAVO-MONTERO, L.; CAICEDO-POTOSÍ, JHON; CARRIÓN-MERO, P. A Sustainability Approach between the Water-Energy-Food Nexus and Clean Energy. **WATER**, v. 16, n. 7, 2024. Disponível em: <https://www.mdpi.com/2073-4441/16/7/1017>. Acesso em: 28 abr. 2025.

JAMES, N. The effects of climate change on informal settlements. **TOWN and REGIONAL PLANNING**, v. 82, p. 1–3, 2023. Disponível em: <https://journals.ufs.ac.za/index.php/trp/article/view/6616>. Acesso em: 28 abr. 2025.

HONG, T.; MALIK, J.; KRELLING, A.; O'BRIEN, W.; SUN, K.; LAMBERTS, R.; WEI, M. Ten questions concerning thermal resilience of buildings and occupants for climate adaptation. **BUILDING AND ENVIRONMENT**, v. 244, p. 110806, 2023. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0360132323008338>. Acesso em: 29 abr. 2025.

INSTITUTO JONES DOS SANTOS NEVES (IJSN). **Déficit Habitacional no Espírito Santo com base no CadÚnico**. Vitória: IJSN, 2023. Disponível em: https://ijsn.es.gov.br/Media/IJSN/PublicacoesAnexos/cadernos/IJSN_D%C3%89FICIT_HABITACIONAL_2023_final.pdf. Acesso em: 29 abr. 2025.

JUNIOR, O. R.; OLIVEIRA, T. de; ZORZAL, E. Gamificação e realidade aumentada em processos de ensino-aprendizagem: uma revisão sistemática de literatura. **Cadernos de Educação Tecnologia e Sociedade**, v. 14, n. 2, p. 262–274, 2021. Disponível: <https://brajets.com/index.php/brajets/article/view/684>. Acesso em: 28 abr. 2025.

LAMPI, A.; BRINK, E.; CARRASCO-TORRONTEGUI, A.; SANTOS, A. H.; SOLORZANO-LEMUS, E.; VÁSQUEZ-ARANGO, C. Reparation ecology and climate risk in Latin-America: Experiences from four countries. **FRONTIERS IN CLIMATE**, v. 4, 2022. Disponível em: <https://www.frontiersin.org/journals/climate/articles/10.3389/fclim.2022.897424/full>. Acesso em: 29 abr. 2025.

LAPOLA, D. M.; BRAGA, D.; DI GIULIO, G. M.; TORRES, R. R. VASCONCELLOS, M. Heat stress vulnerability and risk at the (super) local scale in six Brazilian capitals. **CLIMATIC CHANGE**, v. 154, n. 3–4, p. 477–492, 2019. Disponível em: <https://link.springer.com/article/10.1007/s10584-019-02459-w>. Acesso em: 29 abr. 2025.

LISBOA, M. A.; SILVA, L. V. A.; NASCIMENTO, A. S.; SILVA, A. O.; TEIXEIRA, M. R. A.; FERREIRA, M. F. R.; FERREIRA, M. F.; FERREIRA, S. C.; SILVA, A. C. V.; COLARES, A. V.; JÚNIOR, J. T. C. Diversity, structure, and carbon sequestration potential of the woody flora of urban squares in the Brazilian semiarid region. **Trees, Forests and People**, v. 16, p. 100561, 2024. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2666719324000682>. Acesso em: 29 abr. 2025.

LOCOSCELLI, G. *et al.* Stress-tolerant trees for resilient cities: Tree-ring analysis reveals species suitable for a future climate. **URBAN CLIMATE**, v. 55, 2024. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S2212095524001603>. Acesso em: 29 abr. 2025.

17

LOCOSCELLI, G. *et al.* The role of air pollution and climate on the growth of urban trees. **SCIENCE OF THE TOTAL ENVIRONMENT**, [s. l.], v. 666, p. 652–661, 2019. Disponível em: <https://repositorio.usp.br/item/002934378>. Acesso em: 28 abr. 2025.

LOPES, A. F. O.; SILVA, C. F. e. Building Performance Simulation in Brazil: A systematic review. *In: 16TH IBPSA INTERNATIONAL CONFERENCE AND EXHIBITION*, 2019, Roma. **Anais** [...]. Roma: [s. n.], 2019. p. 4010–4016. Disponível em: https://publications.ibpsa.org/proceedings/bs/2019/papers/BS2019_211143.pdf. Acesso em: 28 abr. 2025.

LUCARELLI, C. D. C.; OLIVEIRA, M. M.; CARLO, J. C. Climate-active building enclosures: an integrative literature review. **Pesquisa em Arquitetura e Construção (PARC)**, [s. l.], v. 14, p. e023023, 2023. Disponível em: <https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8671581>. Acesso em: 28 abr. 2025.

MARENGO, J. *et al.* A globally deployable strategy for co-development of adaptation preferences to sea-level rise: the public participation case of Santos, Brazil. **NATURAL HAZARDS**, [s. l.], v. 88, n. 1, p. 39–53, 2017. Disponível em: <https://link.springer.com/article/10.1007/s11069-017-2855-x>. Acesso em: 29 abr. 2025.

MARQUES, L. B. *et al.* Mudanças climáticas e planos diretores em cidades de pequeno porte: possibilidades e desafios para o enfrentamento da crise climática na escala local. *In: MUDANÇAS CLIMÁTICAS E PLANOS DIRETORES EM CIDADES DE PEQUENO PORTE*, 2023. **ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO**, 17, 2023. Anais [...]:2023. p. 1–10. Disponível em: <https://eventos.antac.org.br/index.php/encac/article/view/4102>. Acesso em: 7 set. 2024.

MASIERO, É.; MENEGALDO, V.; TAVARES, S. G. Análise crítica dos planos municipais de adaptação e mitigação às mudanças climáticas. *Periódico Eletrônico Fórum Ambiental da Alta Paulista*, v. 19, n. 4, 2023. Disponível em: https://publicacoes.amigosdanatureza.org.br/index.php/forum_ambiental/article/view/4328. Acesso em: 31 ago. 2024.

MELLO, B. *et al.* SOCIO-ENVIRONMENTAL VULNERABILITY TO DISASTERS: SCENARIOS AND CHALLENGES FOR THE MUNICIPALITY OF BRUSQUE (SC). *REVISTA DE GESTAO AMBIENTAL E SUSTENTABILIDADE-GEAS*, [s. l.], v. 12, n. 2, 2023. Disponível em: <https://periodicos.uninove.br/geas/article/view/22368>. Acesso em: 29 abr. 2025.

MENDES, V. Climate smart cities? Technologies of climate governance in Brazil. *Urban Governance*, v. 2, n. 2, p. 270–281, 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2664328622000420>. Acesso em: 29 abr. 2025.

MESQUITA, L. F. G.; ALMEIDA, A. N. Impactos Socioambientais em Assentamentos Urbanos Informais. *Revista Nacional de Gerenciamento de Cidades*, v. 12, n. 86, 7 set. 2024. Disponível em: https://publicacoes.amigosdanatureza.org.br/index.php/gerenciamento_de_cidades/article/view/5165. Acesso em: 25.09.2025

MIGUEZ, M.; VERÓL, A. A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control design. *ENVIRONMENT AND PLANNING B-URBAN ANALYTICS AND CITY SCIENCE*, [s. l.], v. 44, n. 5, p. 925–946, 2017. Disponível em: <https://journals.sagepub.com/doi/10.1177/0265813516655799>. Acesso em: 28 abr. 2025.

MORANDI, M. I. W. M.; CAMARGO, L. F. R. Revisão sistemática de literatura. In: DESIGN SCIENCE RESEARCH: A METHOD FOR SCIENCE AND TECHNOLOGY ADVANCEMENT. Cham, Heidelberg, New York, Dordrecht, London: Springer, 2015. p. 153–156.

MOURA, N.; PELLEGRINO, P.; MARTINS, J. Best management practices as an alternative for flood and urban storm water control in a changing climate. *JOURNAL OF FLOOD RISK MANAGEMENT*, v. 9, n. 3, p. 243–254, 2016. Disponível em: <https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.12194>. Acesso em: 28 abr. 2025.

18

MORENO, R.; BRAGA, D.; XAVIER, L. Socio-Ecological Conflicts in a Global South Metropolis: Opportunities and Threats of a Potential Greenway in the São Paulo Metropolitan Region. *FRONTIERS IN SUSTAINABLE CITIES*, [s. l.], v. 3, p. 706857, 2021. Disponível em: <https://www.frontiersin.org/articles/10.3389/frsc.2021.706857/full>. Acesso em: 29 abr. 2025.

NEVES, L. de O.; BERNARDINI, S. P.; RUSCHEL, R. C.; MOREIRA, D. C. Revisões sistemáticas da literatura: parte I. *Pesquisa em Arquitetura e Construção (PARC)*, v. 8, n. 3, p. 141–143, 2017. Disponível em: <https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8651561>. Acesso em: 28 abr. 2025.

NICO-RODRIGUES, E.; BUSSOLOTTI, V. O elemento janela versus desempenho e conforto térmico: uma sistematização de literatura. *arq.urb*, [s. l.], v. 28, p. 238–256, 2020. Disponível em: <https://revistaarqurb.com.br/arqurb/article/view/422>. Acesso em: 29 abr. 2025.

NIETO, V.; BARRIOS, R. Resilient Design Aspects Applied to the Envelope that Determine Thermal Comfort in Social Housing. *REVISTA INGENIERIA DE CONSTRUCCION*. v. 36, 2021. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117185467&doi=10.4067%2fs0718-50732021000200197&partnerID=40&md5=a239ec4ea64b0432caa3f02cb0b59d59>. Acesso em: 29 abr. 2025.

OBRACZKA, M.; BEYELER, M.; MAGRINI, A.; LEGEY, L. F. Analysis of Coastal Environmental Management Practices in Subregions of California and Brazil. *Journal of Coastal Research*, [s. l.], v. 33, n. 6, p. 1315–1332, 2017. Disponível em: <https://www.scopus.com/record/display.uri?eid=2-s2.0-85034442796&doi=10.2112%2fJCOASTRES-D-15-00239.1&origin=inward&txGid=b7f0cfdc8bdc1d2bb4812c45a7c9b408>. Acesso em: 28 abr. 2025.

OKUMURA, C. K.; LOCKE, M.; FRAGA, J. P. R.; DE OLIVEIRA, A. K. B.; VERÓL, A. P.; MAGALHÃES, P. C.; MIGUEZ, M. G. Integrated water resource management as a development driver – Prospecting a sanitation improvement cycle for the greater Rio de Janeiro using the city blueprint approach. *Journal of Cleaner Production*, v. 315, p. 128054–128054, 2021. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0959652621022721>. Acesso em: 28 abr. 2025.

OLIVEIRA, B.; FATH, B. D. Comparative Resilience Evaluation—Case Study for Six Cities in China, Europe, and the Americas. *Land*, v. 12, n. 6, 2023. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163827009&doi=10.3390%2fland12061182&partnerID=40&md5=c5e445945ec46346eb54ffb16707ef19>. Acesso em: 29 abr. 2025.

PARDAL, A.; CHRISTOFOLETTI, R.; MARTINEZ, A. Urbanisation on the coastline of the most populous and developed state of Brazil: the extent of coastal hardening and occupations in low-elevation zones. *ANTHROPOCENE COASTS*, [s. l.], v. 7, n. 1, 2024. Disponível em: <https://link.springer.com/article/10.1007/s44218-024-00048-8>. Acesso em: 29 abr. 2025.

PATERSON, S. K. et al. Size does matter: City scale and the asymmetries of climate change adaptation in three coastal towns. *Geoforum*, [s. l.], v. 81, p. 109–119, 2017. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0016718517300507>. Acesso em: 29 abr. 2025.

PELLEGRINI, I.; BUSSOLOTTI, V. M.; SALVALAIO, R.; ALVAREZ, C. E. Soluções Baseadas na Natureza para adaptação ao aumento do nível do mar: uma revisão sistemática. *Paranoá cadernos de arquitetura e urbanismo*, [s. l.], v. 34, 2023. Disponível em: <https://periodicos.unb.br/index.php/paranoa/article/view/47348>. Acesso em: 29 abr. 2025.

PETIT-BOIX, A. et al. Environmental and economic assessment of a pilot stormwater infiltration system for flood prevention in Brazil. *ECOLOGICAL ENGINEERING*, [s. l.], v. 84, p. 194–201, 2015. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0925857415301427?via%3Dihub>. Acesso em: 29 abr. 2025.

19

RAIMONDI, A.; MARRAZZO, G.; SANFILIPPO, U.; BECCIU, G. A probabilistic approach to stormwater runoff control through permeable pavements beneath urban trees. *Science of The Total Environment*, v. 905, p. 167196–167196, 2023. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0048969723058230>. Acesso em: 29 abr. 2025.

REZENDE, O. M.; MIRANDA, F.M.; HADDAD, A.N.; MIGUEZ, M.G. A Framework to Evaluate Urban Flood Resilience of Design Alternatives for Flood Defence Considering Future Adverse Scenarios. *WATER*, v. 11, n. 7, 2019. Disponível em: <https://www.mdpi.com/2073-4441/11/7/1485>. Acesso em: 28 abr. 2025.

ROCA-BARCELÓ, A.; FECHT, D.; PIRANI, M.; PIEL, F. B.; NARDOCCI, A. C.; VINEIS, P. Trends in Temperature-associated Mortality in São Paulo (Brazil) between 2000 and 2018: an Example of Disparities in Adaptation to Cold and Heat. *JOURNAL OF URBAN HEALTH-BULLETIN OF THE NEW YORK ACADEMY OF MEDICINE*, v. 99, n. 6, p. 1012–1026, 2022. Disponível em: <https://link.springer.com/article/10.1007/s11524-022-00695-7>. Acesso em: 29 abr. 2025.

RODRIGUES, B. N.; MOLINA JUNIOR, V. E.; CANTERAS, F. B. Green Infrastructure as a solution to mitigate the effects of climate change in a coastal area of social vulnerability in Fortaleza (Brazil). *Environmental Advances*, [s. l.], v. 13, p. 100398, 2023. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2666765723000583>. Acesso em: 29 abr. 2025.

RODRIGUES, B.B.; VALADARES, J.V.; COSTA, E.D.F.; ASSIS, E.S.; SILVA, F.J. Promoting Thermal Comfort in Communities: Urban Shading Project Based on Local Characteristics. In: ZEMCH INTERNATIONAL CONFERENCE, 2023. *Anais [...]*. Arequipa: 2023. p. 95–102. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194028039&partnerID=40&md5=a4d38fc92f47feabdb48bcc07eb8413e>. Acesso em: 28 abr. 2025.

ROGERS, R. *Cities for a small planet*. 1. ed. London: Faber and Faber, 1997.

ROLO, D. *et al.* Local Society Perception on Ecosystem Services as an Adaptation Strategy in Urban Stream Recovery Programs in the City of São Paulo, Brazil. **ENVIRONMENTAL MANAGEMENT**, [s. l.], v. 69, n. 4, p. 684–698, 2022. Disponível em: <https://doi.org/10.1007/s00267-021-01471-0>. Acesso em: 29 abr. 2025.

SALVALAIO, R. *et al.* Mudanças climáticas e envelhecimento populacional: uma necessária revisão sistemática de literatura. **PARC: Pesquisa em Arquitetura e Construção**, [s. l.], v. 14, p. 23024, 2023. Disponível em: <https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8671221>. Acesso em: 29 abr. 2025.

SCARANO, F.; CEOTTO, P. Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. **BIODIVERSITY AND CONSERVATION**, [s. l.], v. 24, n. 9, p. 2319–2331, 2015. Disponível em: <https://link.springer.com/article/10.1007/s10531-015-0972-y>. Acesso em: 28 abr. 2025.

SANTOS, T.; SILVA, M. A.; FERNANDES, M. A. S.; MARSDEN, G. Resilience and Vulnerability of Public Transportation Fare Systems: The Case of the City of Rio de Janeiro, Brazil. **SUSTAINABILITY**, [s. l.], v. 12, n. 2, 2020. Disponível em: <https://www.mdpi.com/2071-1050/12/2/647>. Acesso em: 29 abr. 2025.

SCHMIDT, L. *et al.* Understanding the science-policy interface in urban climate governance from a co-production perspective: Insights from the cases of Hamburg and São Paulo. **ENVIRONMENTAL SCIENCE & POLICY**, [s. l.], v. 156, p. 103750, 2024. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1462901124000844>. Acesso em: 29 abr. 2025.

SILVA, A. M. A.; LAZARO, L. L. B.; ANDRADE, J. C. S.; MONTEIRO, B. A. L.; PRADO, A. F. R. Salvador: Profile of a resilient city?. **CITIES**, [s. l.], v. 127, 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0264275122001664?via%3Dihub>. Acesso em: 29 abr. 2025.

TEIXEIRA, R. L. P.; PESSOA, Z. S. Urban planning and climate adaptation: Between possibilities and challenges in two major Brazilian cities. **Revista Brasileira de Estudos de População**, v. 38, 2021. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113312257&doi=10.20947%2fS0102-3098a0165&partnerID=40&md5=2f8ce00971a90544ff884878177de276>. Acesso em: 29 abr. 2025.

20

TORRES, P. *et al.* Just cities and nature-based solutions in the Global South: A diagnostic approach to move beyond panaceas in Brazil. **ENVIRONMENTAL SCIENCE & POLICY**, [s. l.], v. 143, p. 24–34, 2023. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149362618&doi=10.1016%2fj.envsci.2023.02.017&partnerID=40&md5=5c21e2bfbba1f920321050ad1b7fd744>. Acesso em: 29 abr. 2025.

VASCONCELOS, C. A. V. D. Inovações na provisão de moradia nos Estados Unidos: soluções acessíveis e sustentáveis. **Revista Científica Multidisciplinar Núcleo do Conhecimento**, v. 02, n. 01, p. 47–60, 2024. Disponível em: <https://www.nucleodoconhecimento.com.br/arquitetura/provisao-de-moradia>. Acesso em: 28 abr. 2025.

VIANA, J. P. *et al.* **Dimensionamento e Comportamento dos Gastos Ambientais do Governo Federal: 2001 a 2018: Texto para discussão**. Rio de Janeiro: Instituto de Pesquisa Econômica (IPEA), 2020. Disponível em: https://www.ipea.gov.br/portal/images/stories/PDFs/TDs/td_2609.pdf. Acesso em: 1 set. 2024.

VIANA, J. P. Gastos ambientais do governo federal: Aperfeiçoamentos metodológicos, atualização para o período Bolsonaro e avaliação da atuação governamental, em especial no combate ao desmatamento na Amazônia - A passagem da boiada: Texto para Discussão. Rio de Janeiro: Instituto de Pesquisa Econômica Aplicada (Ipea), 2024. Disponível em: https://repositorio.ipea.gov.br/bitstream/11058/13719/1/TD_2984_web.pdf. Acesso em: 1 set. 2024.

YOUNG, A. F. Adaptation actions for integrated climate risk management into urban planning: a new framework from urban typologies to build resilience capacity in Santos (SP). **City, Territory and Architecture**, v. 3, n. 1, 2016.

Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051805934&doi=10.1186%2fs40410-016-0042-0&partnerID=40&md5=4a258841c42967bf5ad33e347031974c>. Acesso em: 29 abr. 2025

ZANETTI, V.; DE SOUSA, W.; DE FREITAS, D. A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City. **SUSTAINABILITY**, v. 8, n. 8, 2016. Disponível em: <https://www.mdpi.com/2071-1050/8/8/811>. Acesso em: 28 abr. 2025.

STATEMENTS

CONTRIBUIÇÃO DE CADA AUTOR

- **Study Conception and Design:** Adriano Felipe Oliveira Lopes.
- **Data Curation:** Adriano Felipe Oliveira Lopes.
- **Formal Analysis:** Adriano Felipe Oliveira Lopes e Edna Aparecido Nico Rodrigues.
- **Investigation:** Adriano Felipe Oliveira Lopes.
- **Methods:** Adriano Felipe Oliveira Lopes..
- **Writing:** Adriano Felipe Oliveira Lopes.
- **Writing:** Review: Edna Aparecido Nico Rodrigues.
- **Review and Final Editing:** Edna Aparecido Nico Rodrigues.
- **Oversight:** Edna Aparecido Nico Rodrigues.

CONFLICTS OF INTEREST STATEMENT

We, **Adriano Felipe Oliveira Lopes and Edna Aparecida Nico Rodrigues**, declare that the manuscript entitled "**Challenges of Climate Change Adaptation in Brazilian Municipalities: A Systematic Literature Review**":

1. **Financial Interests:** This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.
2. **Financial Interests:** This work does not involve any professional relationships.
3. **Personal Conflicts:** This work does not involve any personal conflicts of interest related.

22